Skip to main content
Log in

Basic theory of fractional Mei symmetrical perturbation and its applications

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, we present a new method of fractional dynamics, i.e., the fractional Mei symmetrical perturbation method of a disturbed system, and explore the adiabatic invariant directly led by the perturbation. For a dynamical system which is disturbed by small forces of perturbation, the disturbed fractional generalized Hamiltonian equation is investigated and, under a more general kind of fractional infinitesimal transformation of a Lie group, the fractional Mei symmetrical definition and determining equation of a disturbed dynamical system are given; then, the determining equation of fractional Mei symmetrical perturbation is obtained. In particular, we present the fractional Mei symmetrical perturbation method of a disturbed dynamical system and it is found that, using the new method, we can find a new kind of non-Noether adiabatic invariant directly led by the perturbation. As special cases, we obtain a new fractional Mei symmetrical conservation law of the undisturbed dynamical system and a Mei symmetrical perturbation theorem of the disturbed integer dynamical system. Also, as the fractional Mei symmetrical perturbation method’s applications, we find the adiabatic invariants of a disturbed fractional Duffing oscillator and a disturbed fractional Lotka biochemical oscillator. This work constructs a basic theoretical framework of fractional Mei symmetrical perturbation method and provides a general method of fractional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mei, F.X.: Form invariance of Lagrange system. J. Beijing Inst. Technol. 2, 120–124 (2000)

    MathSciNet  MATH  Google Scholar 

  2. Noether, E.: Invariant variational problems. Math. Phys. Klasse 2, 235–257 (1918)

    MATH  Google Scholar 

  3. Lutzky, M.: Dynamical symmetries and conserved quantities. J. Phys. A 12, 973–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jiang, W.A., Luo, S.K.: Mei symmetry leading to Mei conserved quantity of generalized Hamilton systems. Acta Phys. Sin. 60, 060201 (2011)

    MATH  Google Scholar 

  5. Luo, S.K., Guo, Y.X., Mei, F.X.: Form invariance and Hojman conserved quantity for nonholonomic mechanical system. Acta Phys. Sin. 53, 2413–2418 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Wu, H.B., Mei, F.X.: Form invariance and Lie symmetry of the generalized Hamiltonian system. Acta Mech. Solida Sin. 17, 370–373 (2004)

    Google Scholar 

  7. Jia, L.Q., Wang, X.X., Zhang, M.L., Han, Y.L.: Special Mei symmetry and approximate conserved quantity of Appell equations for a weakly nonholonomic system. Nonlinear Dyn. 69, 1807–1812 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, P., Xue, Y.: Conformal invariance of Mei symmetry and conserved quantities of Lagrange equation of thin elastic rod. Nonlinear Dyn. 83, 1815–1822 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wang, P., Fang, J.H., Ding, N.: Two types of new conserved quantities and Mei symmetry of mechanical systems in phase space. Commun. Theor. Phys. 48, 993–995 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhang, M.J., Fang, J.H., Lu, K.: Perturbation to Mei symmetry and generalized Mei adiabatic invariants for Birkhoffian systems. Int. J. Theor. Phys. 49, 427–437 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, X.W.: Global Analysis for Birkhoff Systems. Henan University Press, Kaifeng (2002)

    Google Scholar 

  12. Cai, J.L.: Conformal invariance and conserved quantity for the nonholonomic system of Chetaev’s type. Int. J. Theor. Phys. 49, 201–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, W.L., Cai, J.L.: Inverse problems of Mei symmetry for nonholonomic systems with variable mass. J. Mech. 31, 1–9 (2015)

    Article  Google Scholar 

  14. Cai, J.L.: Conformal invariance of Mei symmetry for the non-holonomic systems of non-Chetaev’s type. Nonlinear Dyn. 69, 487–493 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, Y., Mei, F.X.: Form invariance for systems of generalized classical mechanics. Chin. Phys. 12, 1058–1061 (2003)

    Article  Google Scholar 

  16. Luo, S.K.: Mei symmetry, Noether symmetry and Lie symmetry of Hamiltonian canonical equation in a singular system. Acta Phys. Sin. 53, 5–10 (2004)

    MATH  Google Scholar 

  17. Luo, S.K., Dai, Y., Zhang, X.T., Yang, M.J.: Fractional conformal invariance method for finding conserved quantities of dynamical systems. Int. J. Non-Linear Mech. 97, 107–114 (2017)

  18. Luo, S.K.: Form invariance and Lie symmetries of rotational relativistic Birkhoff system. Chin. Phys. Lett. 19, 449–451 (2002)

    Article  Google Scholar 

  19. Luo, S.K., Zhang, Y.F.: Advances in the Study of Dynamics of Constrained System. Science Press, Beijing (2008)

    Google Scholar 

  20. Burgers, J.M.: Die adiabatischen invarianten bedingt periodischenr systems. Ann. Phys. 52, 195–202 (1917)

    Article  Google Scholar 

  21. Kruskal, M.: Asymptotic theory of Hamiltonian and other system with all solutions nearly periodic. J. Math. Phys. 3, 806–828 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  22. Djukic, D.S.: Adiabatic invariants for dynamical systems with one degree of freedom. Int. J. Nonlinear Mech. 16, 489–498 (1981)

    Article  MATH  Google Scholar 

  23. Bulanov, S.V., Shasharina, S.G.: Behaviour of adiabatic invariant near the separatrix in a stellarator. Nucl. Fus. 32, 1531–1543 (1992)

    Article  Google Scholar 

  24. Notte, J., Fajans, J., Chu, R., Wurtele, J.S.: Experimental breaking of an adiabatic invariant. Phys. Rev. Lett. 70, 3900–3903 (1993)

    Article  Google Scholar 

  25. Ding, N., Fang, J.H.: Mei adiabatic invariants induced by perturbation of Mei symmetry for nonholonomic controllable mechanical systems. Commun. Theor. Phys. 54, 785–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Song, C.J., Zhang, Y.: Perturbation to Mei symmetry and adiabatic invariants for disturbed El-Nabulsi’s fractional Birkhoff system. Commun. Theor. Phys. 64, 171–176 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mandelbrot, B.B.: The Fractal Geometry of Nature. W.H. Freeman, New York (1982)

    MATH  Google Scholar 

  28. Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997)

    Article  MathSciNet  Google Scholar 

  29. Agrawal, O.P., Muslih, S., Baleanu, D.: Generalized variational calculus in terms of multi-parameters fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 16, 4756–4767 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Baleanu, D., Agrawal, O.P.: Fractional Hamilton formalism within Caputo’s derivative. Czechoslov. J. Phys. 56, 1087–1092 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Golmankhaneh, A.K., Yengejeh, A.M., Baleanu, D.: On the fractional Hamilton and Lagrange mechanics. Int. J. Theor. Phys. 51, 2909–2916 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Baleanu, D., Muslih, S.I., Rabei, E.M.: On fractional Euler–Lagrange and Hamilton equations and the fractional generalization of total time derivative. Nonlinear Dyn. 53, 67–74 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Baleanu, D., Trujillo, J.: A new method of finding the fractional Euler–Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 15, 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czechoslov. J. Phys. 52, 1247–1253 (2002)

    Article  MATH  Google Scholar 

  35. Almeida, R., Torres, D.F.M.: Calculus of variations with fractional derivatives and fractional integrals. Appl. Math. Lett. 22, 1816–1820 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Malinowska, A.B., Torres, D.F.M.: Fractional calculus of variations for a combined Caputo derivative. Fract. Calc. Appl. Anal. 14, 523–537 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhang, Y.: Fractional differential equations of motion in terms of combined Riemann–Liouville derivatives. Chin. Phys. B 21, 084502 (2012)

    Article  Google Scholar 

  38. Tarasov, V.E.: Fractional Dynamics. Higher Education Press, Beijing (2010)

    Book  MATH  Google Scholar 

  39. Luo, S.K., Xu, Y.L.: Fractional Birkhoffian mechanics. Acta Mech. 226, 829–844 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. He, J.M., Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional Birkhoffian systems. Acta Mech. 226, 2135–2146 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Luo, S.K., He, J.M., Xu, Y.L.: Fractional Birkhoffian method for equilibrium stability of dynamical systems. Int. J. Nonlinear Mech. 78, 105–111 (2016)

    Article  Google Scholar 

  42. Xu, Y.L., Luo, S.K.: Fractional Nambu dynamics. Acta Mech. 226, 3781–3793 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Luo, S.K., Zhang, X.T., He, J.M.: A general method of fractional dynamics, i.e., fractional Jacobi last multiplier method, and its applications. Acta. Mech 228, 157–174 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, Y., Zhai, X.H.: Noether symmetries and conserved quantities for fractional Birkhoffian systems. Nonlinear Dyn. 81, 469–480 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Yan, B., Zhang, Y.: Noether’s theorem for fractional Birkhoffian systems of variable order. Acta Mech. 227, 2439–2449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jia, Q.L., Wu, H.B., Mei, F.X.: Noether symmetries and conserved quantities for fractional forced Birkhoffian systems. J. Math. Anal. Appl. 442, 782–795 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Song, C.J., Zhang, Y.: Conserved quantities and adiabatic invariants for fractional generalized Birkhoffian systems. Int. J. Nonlinear Mech. 90, 32–38 (2017)

    Article  Google Scholar 

  48. Luo, S.K., Li, L.: Fractional generalized Hamiltonian mechanics and Poisson conservation law in terms of combined Riesz derivatives. Nonlinear Dyn. 73, 639–647 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Luo, S.K., Zhang, X.T., He, J.M., Xu, Y.L.: On the families of fractional dynamical models. Acta Mech. 228, 3741–3754 (2017)

  50. Li, L., Luo, S.K.: Fractional generalized Hamiltonian mechanics. Acta Mech. 224, 1757–1771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Luo, S.K., Li, L.: Fractional generalized Hamiltonian equations and its integral invariants. Nonlinear Dyn. 73, 339–346 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Luo, S.K., Li, L., Xu, Y.L.: Lie algebraic structure and generalized Poisson conservation law for fractional generalized Hamiltonian systems. Acta Mech. 225, 2653–2666 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, X.T., He, J.M., Luo, S.K.: A new type of fractional Lie symmetrical method and its applications. Int. J. Theor. Phys. 56, 971–990 (2017)

    Article  MATH  Google Scholar 

  54. Luo, S.K., Dai, Y., Zhang, X.T., He, J.M.: A new method of fractional dynamics, i.e., fractional Mei symmetrical method for finding conserved quantity, and its applications to physics. Int. J. Theor. Phys. 55, 4298–4309 (2016)

    Article  MATH  Google Scholar 

  55. Xu, Y.L., Luo, S.K.: Stability for manifolds of equilibrium state of fractional generalized Hamiltonian systems. Nonlinear Dyn. 76, 657–672 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Luo, S.K., He, J.M., Xu, Y.L.: A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications. Appl. Math. Comput. 269, 77–86 (2015)

    MathSciNet  Google Scholar 

  57. Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional generalized Hamilton method for equilibrium stability of dynamical systems. Appl. Math. Lett. 60, 14–20 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Luo, S.K., Xu, Y.L.: Fractional Lorentz–Dirac model and its dynamical behaviors. Int. J. Theor. Phys. 54, 572–581 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  59. Luo, S.K., He, J.M., Xu, Y.L., Zhang, X.T.: Fractional relativistic Yamaleev oscillator model and its dynamical behaviors. Found. Phys. 46, 776–786 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Continuous transformation groups of fractional differential equations. Vestn. USATU 9, 125–135 (2007)

    Google Scholar 

  61. Gazizov, R.K., Kasatkin, A.A., Lukashchuk, S.Y.: Symmetry properties of fractional diffusion equations. Phys. Scr. 136, 014016 (2009)

    Article  Google Scholar 

  62. Duffing, G.: Erzwunge Schweingungen bei Veranderlicher Eigenfrequenz. F. Viewigu Sohn, Braunschweig (1918)

    MATH  Google Scholar 

  63. Sato, S.: Universal scaling property in bifurcation structure of Duffing’s and generalized Duffing’s equation. Phys. Rev. A. 28, 1654–1658 (1981)

    Article  MathSciNet  Google Scholar 

  64. Ueda, Y.: Random phenomena resulting from non-linearity in system described by Duffing’s equation. Int. J. Nonlinear Mech. 73, 481–491 (1985)

    Article  Google Scholar 

  65. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods. Wiley, New York (1995)

    Book  MATH  Google Scholar 

  66. Chen, Y.F., Zheng, J.H., Wu, X.Y., Wang, J.: On high-accuracy approximate solution of undamped Duffing equation. Mech. Sci. Technol. Aerosp. Eng. 27, 1591–1594 (2008)

    Google Scholar 

  67. Albert Luo, C.J., Huang, J.Z.: Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator. Nonlinear Dyn. 72, 417–438 (2013)

    Article  MathSciNet  Google Scholar 

  68. Dutt, R.: Application of Hamilton–Jacobi theory to the Lotka–Volterra oscillator. Bull. Math. Biol. 38, 459–465 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to reviewers for their valuable comments which undoubtedly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Kai Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, SK., Yang, MJ., Zhang, XT. et al. Basic theory of fractional Mei symmetrical perturbation and its applications. Acta Mech 229, 1833–1848 (2018). https://doi.org/10.1007/s00707-017-2040-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2040-z

Navigation