Skip to main content
Log in

On elastic fields of perfectly bonded and sliding circular inhomogeneities in an infinite matrix

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The solutions to classical problems of perfectly bonded and sliding circular inhomogeneities in a remotely loaded infinite matrix are constructed by using an appealing choice of dimensionless material parameters that represent the in-plane average normal stress and the maximum shear stress at the center of the inhomogeneity, scaled by the corresponding measures of remote stress. The ovalization of the inhomogeneity and the effects of material parameters on stress concentration are discussed. The range of material parameters is specified for which the inhomogeneity with a perfectly bonded interface can expand in vertical direction under horizontal remote loading. For some combination of material properties, the maximum compressive hoop stress in the matrix along the interface can be larger than the maximum hoop stress around a circular void under tensile remote loading. The strain energies stored in perfectly bonded and sliding inhomogeneities are evaluated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  2. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Kluwer Academic Publishers, Dordrecht (1987)

    Book  MATH  Google Scholar 

  3. Nemat-Nasser, S., Hori, M.: Micromechanics: Overall Properties of Heterogeneous Materials, 2nd edn. North-Holland, Amsterdam (1999)

    MATH  Google Scholar 

  4. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  5. Ugural, A.C., Fenster, S.K.: Advanced Mechanics of Materials and Applied Elasticity. Prentice Hall, Upper Saddle River (2003)

    MATH  Google Scholar 

  6. Ghahremani, F.: Effect of grain boundary sliding on anelasticity of polycrystals. Int. J. Solids Struct. 16, 825–845 (1980)

    Article  MATH  Google Scholar 

  7. Cook, R.D., Young, W.C.: Advanced Mechanics of Materials, 2nd edn. Pearson College Division, London (1999)

    Google Scholar 

  8. Krajcinovic, D.: Damage Mechanics. Elsevier, Amsterdam (1996)

    MATH  Google Scholar 

  9. Noble, B., Hussain, M.A.: Exact solution of certain dual series for indentation and inclusion problems. Int. J. Eng. Sci. 7, 1149–1161 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  10. Keer, L.M., Dundurs, J., Kiattikomol, K.: Separation of a smooth circular inclusion from a matrix. Int. J. Eng. Sci. 1, 1221–1233 (1973)

    Article  Google Scholar 

  11. Furuhashi, R., Huang, J.H., Mura, T.: Sliding inclusions and inhomogeneities with frictional interfaces. J. Appl. Mech. 59, 783–788 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kattis, M.A., Providas, E.: Inplane deformation of a circular inhomogeneity with imperfect interface. Theor. Appl. Fract. Mech. 28, 213–222 (1998)

    Article  MATH  Google Scholar 

  13. Honein, T., Herrmann, G.: On bonded inclusions with circular or straight boundaries in plane elastostatics. J. Appl. Mech. 57, 850–856 (1990)

    Article  MATH  Google Scholar 

  14. Goodier, J.N.: Concentration of stress around spherical and cylindrical inclusions and flaws. J. Appl. Mech. 55, 39–44 (1933)

    Google Scholar 

  15. Dundurs, J.: Effect of elastic constants on stress in a composite under plane deformation. J. Compos. Mater. 1, 310–322 (1967)

    Article  Google Scholar 

  16. Malvern, L.E.: Introduction to the Mechanics of Continuous Media. Prentice Hall, Upper Saddle River (1968)

    Google Scholar 

  17. Mura, T., Jasiuk, I., Tsuchida, E.: The stress field of a sliding inclusion. Int. J. Solids Struct. 21, 1165–1179 (1985)

    Article  Google Scholar 

  18. Lubarda, V.A.: Sliding and bonded circular inclusions in concentric cylinders. Proc. Monten. Acad. Sci. Arts OPN 12, 123–139 (1998)

    Google Scholar 

  19. Lubarda, V.A., Markenscoff, X.: Energies of circular inclusions: sliding versus bonded interfaces. Proc. R. Soc. Lond. A 455, 961–974 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lee, M., Jasiuk, I., Tsuchida, E.: The sliding circular inclusion in an elastic half-plane. J. Appl. Mech. 59, S57–S64 (1992)

    Article  MATH  Google Scholar 

  21. Stagni, L.: On the elastic field perturbation by inhomogeneities in plane elasticity. J. Appl. Math. Phys. 33, 315–325 (1982)

    Article  MATH  Google Scholar 

  22. Tsuchida, E., Mura, T., Dundurs, J.: The elastic field of an elliptic inclusion with a slipping interface. J. Appl. Mech. 53, 103–107 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jasiuk, I., Tsuchida, E., Mura, T.: The sliding inclusion under shear. Int. J. Solids Struct. 23, 1373–1385 (1987)

    Article  MATH  Google Scholar 

  24. Lubarda, V.A., Markenscoff, X.: On the stress field in sliding ellipsoidal inclusions with shear eigenstrain. J. Appl. Mech. 65, 858–862 (1998)

    Article  Google Scholar 

  25. Lubarda, V.A., Markenscoff, X.: On the absence of Eshelby property for ellipsoidal inclusions. Int. J. Solids Struct. 35, 3405–3411 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubarda, V.A.: On the circumferential shear stress around circular and elliptical holes. Arch. Appl. Mech. 85, 223–235 (2015)

    Article  Google Scholar 

  27. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  28. Christensen, R.M.: Mechanics of Composite Materials. Wiley, New York (1980)

    Google Scholar 

  29. Voyiadjis, G.Z., Kattan, P.I.: Mechanics of Composite Materials with MATLAB. Springer, Berlin (2005)

    Google Scholar 

  30. Asaro, R.J., Lubarda, V.A.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vlado A. Lubarda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubarda, V.A. On elastic fields of perfectly bonded and sliding circular inhomogeneities in an infinite matrix. Acta Mech 229, 1597–1611 (2018). https://doi.org/10.1007/s00707-017-2033-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2033-y

Navigation