Cu(I) mediated hydrogen borrowing strategy for the α-alkylation of aryl ketones with aryl alcohols

Abstract

New triazolium Schiff bases (TSBs) were synthesised via a simple and high throughput process. The new salts were successfully characterised. When reacted with Cu(CH3CN)4PF6, the TSB salts formed mononuclear triazole Schiff base copper(I) complexes and dinuclear complexes that were also characterised. The copper complexes were generated in situ (mixtures of TSB salts with Cu(CH3CN)4PF6) and applied as homogeneous catalysts for the C–C coupling of a variety of aryl ketones with aryl alcohols, from which significant reactivity was observed. Reaction conditions were optimised, and the results indicate that the catalyst systems are very robust. A catalyst concentration of 10 mol% efficiently and selectively catalysed the α-alkylation of methyl phenyl ketone and its derivatives to afford up to 94% yield of 1,3-diphenylpropan-1-one and its analogues. The process is adaptable with analogues of acetophenone and benzyl alcohol bearing various regulating substituents tolerated.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Trost BM, Fleming I (1991). In: Schreiber SL (ed) Selectivity, strategy and efficiency in modem organic chemistry. Pergamon Press, Oxford

    Google Scholar 

  2. 2.

    Obora Y (2014) ACS Catal 4:3972

    CAS  Article  Google Scholar 

  3. 3.

    Shen D, Poole DL, Shotton CC, Kornahrens AF, Healy MP, Donohoe TJ (2015) Angew Chem Int Ed 54:1642

    CAS  Article  Google Scholar 

  4. 4.

    Rueping M, Phapale VB (2012) Green Chem 14:55

    CAS  Article  Google Scholar 

  5. 5.

    Taguchi K, Nakagawa H, Hirabayashi T, Sakaguchi S, Ishii Y (2004) J Am Chem Soc 126:72

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Yan F, Zhang M, Wang X, Xie F, Chen M, Jiang H (2014) Tetrahedron 70:1193

    CAS  Article  Google Scholar 

  7. 7.

    Cho CS, Kim BT, Kim T, Shim SC (2002) Tetrahedron Lett 43:7987

    CAS  Article  Google Scholar 

  8. 8.

    Kovalenko, OO, Lundberg H, Hübner D, Adolfsson H (2014) Eur J Org Chem 6639. https://doi.org/10.1002/ejoc.201403032

  9. 9.

    Kuwahara T, Fukuyama T, Ryu I (2012) Org Lett 14:4703

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10.

    Martınez R, Brand GJ, Ramon DJ, Yus M (2005) Tetrahedron Lett 46:3683

    Article  CAS  Google Scholar 

  11. 11.

    Martınez R, Ramon DJ, Yus M (2006) Tetrahedron 62:8988

    Article  CAS  Google Scholar 

  12. 12.

    Chan LK, Poole DL, Shen D, Healy MP, Donohoe TJ (2014) Angew Chem Int Ed 53:761

    CAS  Article  Google Scholar 

  13. 13.

    Cho CS, Seok HJ, Shim SC (2005) J Heterocycl Chem 42:1219

    CAS  Article  Google Scholar 

  14. 14.

    Satyanarayana P, Reddy GM, Maheswaran H, Kantam ML (2013) Adv Synth Catal 355:1859

    CAS  Article  Google Scholar 

  15. 15.

    Wang R, Huang L, Du Z, Feng H (2017) J Organomet Chem 846:40

    CAS  Article  Google Scholar 

  16. 16.

    Elangovan S, Sortais JB, Beller M, Darcel C (2015) Angew Chem Int Ed 54:14483

    CAS  Article  Google Scholar 

  17. 17.

    Pan X, Li M, Gu Y (2014) Chem Asian J 9:268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Peria-Lopez M, Piehl P, Elangovan S, Neumann H, Beller M (2016) Angew Chem Int Ed 55:14967

    Article  CAS  Google Scholar 

  19. 19.

    Zhang G, Wu J, Zeng H, Zhang S, Yin Z, Zheng S (2017) Org Lett 19:1080

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Dixit M, Mishra M, Joshi PA, Shah DO (2013) Catal Commun 33:80

    CAS  Article  Google Scholar 

  21. 21.

    Alonso F, Riente P, Yus M (2008) Eur J Org Chem 4908. https://doi.org/10.1002/ejoc.200800729

  22. 22.

    Cui X, Zhang Y, Shi F, Deng Y (2011) Chem Eur J 17:1021

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Tan DW, Li HX, Zhu DL, Li HY, Young DJ, Yao JL, Lang JP (2018) Org Lett 20:608

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Lawal NS, Bala MD (2020) J Mol Struct 1200:127124

    CAS  Article  Google Scholar 

  25. 25.

    Kadwa E, Friedrich HB, Bala MD (2017) Inorg Chim Acta 463:112

    CAS  Article  Google Scholar 

  26. 26.

    Mathew P, Neels A, Albrecht M (2008) J Am Chem Soc 130:13534

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Mncube SG, Bala MD (2016) J Mol Liq 215:396

    CAS  Article  Google Scholar 

  28. 28.

    Dhimba G, Lawal NS, Bala MD (2019) J Mol Struct 1179:100

    CAS  Article  Google Scholar 

  29. 29.

    Abubakar S, Ibrahim H, Bala MD (2019) Inorg Chim Acta 484:276

    CAS  Article  Google Scholar 

  30. 30.

    Lake BRM, Willans CE (2014) Organometallics 33:2027

    CAS  Article  Google Scholar 

  31. 31.

    Mncube SG, Bala MD (2019) Trans Met Chem 44:145

    CAS  Article  Google Scholar 

  32. 32.

    Ihaumeer-Laulloo BS, Bhowon MG (2003) Indian J Chem 42A:2536

    Google Scholar 

  33. 33.

    Bagihalli GB, Patil SA, Badami PS (2009) J Iran Chem Soc 6:259

    CAS  Article  Google Scholar 

  34. 34.

    Singh K, Singh DP, Barwa MS, Tyagi P, Mirza Y (2006) J Enzyme Inhib Med Chem 21:749

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Singh K, Kumar Y, Puri P, Sharma C, Aneja KR (2017) Arab J Chem 10:S978

    CAS  Article  Google Scholar 

  36. 36.

    Grusenmeyer TA, King AW, Mague JT, Rack JJ, Schmehl RH (2014) Dalton Trans 43:17754

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hauwert P, Boerleider R, Warsink S, Weigand JJ, Elsevier CJ (2010) J Am Chem Soc 132:16900

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Ibrahim H, Bala MD (2016) New J Chem 40:6986

    CAS  Article  Google Scholar 

  39. 39.

    Chen J, Yuan T, Hao W, Cai M (2011) Tetrahedron Lett 52:3710

    CAS  Article  Google Scholar 

  40. 40.

    Dudev T, Lim C (1998) J Am Chem Soc 120:4450

    CAS  Article  Google Scholar 

  41. 41.

    Aihara J (1992) Sci Am 266:62

    CAS  Article  Google Scholar 

  42. 42.

    Lal S, Diez-Gonzalez S (2011) J Org Chem 76:2367

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Cozzi PG (2004) Chem Soc Rev 33:410

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the University of KwaZulu-Natal, ESKOM (TESP 2019) and the NRF. NSL thanks Ahmadu Bello University for a paid study fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad D. Bala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1966 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lawal, N.S., Ibrahim, H. & Bala, M.D. Cu(I) mediated hydrogen borrowing strategy for the α-alkylation of aryl ketones with aryl alcohols. Monatsh Chem (2021). https://doi.org/10.1007/s00706-021-02735-5

Download citation

Keywords

  • C–C coupling
  • α-Alkylation
  • Copper complex
  • Schiff base
  • 1,2,3-Triazolium salt