Development of molecularly imprinted magnetic iron oxide nanoparticles for doxorubicin drug delivery

Abstract

In this study, we prepare a biocompatible and magnetic material coated with dopamine (Fe3O4/SiO2@DA) for drug delivery of doxorubicin. Doxorubicin is a commercially available drug for the treatment of several types of cancers such as metastatic breast carcinoma, blood, lungs, ovarian carcinoma, and sarcoma. Magnetic nanoparticles are synthesized by co-precipitation method and coated with dopamine. Characterization of materials is carried out by Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Magnetic properties of the particles are evaluated by magnetic moment measurements. Later, this material is applied to the targeted delivery of doxorubicin. Several experimental parameters such as loading time, release time, loading temperature, release temperature, desorption pH, amount of nanomaterial, salt concentration, and effect of solvent are optimized. Loading of a drug is maximum in basic pH while acidic pH (3.3) works best for the desorption process. With increasing the amount of material, loading of drug increase. Moreover, salt (NaCl) concentration does not affect the loading process. Loading of a drug is maximum at a lower temperature (room temperature) while the release is more efficient at a higher temperature (40–45 °C). This material showed superior efficiency (drug loading, drug release, and time) as compared to previously reported similar materials. These results indicate that Fe3O4/SiO2@DA has excellent potential to carry the drug and deliver to cancerous cells which have acidic pH and higher temperature as compared to normal healthy cells.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Judson I, Verweij J, Gelderblom H, Hartmann JT, Schöffski P, Blay JY, Kerst JM, Sufliarsky J, Whelan J, Hohenberger P (2014) Lancet Oncol 15:415

    CAS  Article  Google Scholar 

  2. 2.

    Peiris D, Spector AF, Lomax-Browne H, Azimi T, Ramesh B, Loizidou M, Welch H, Dwek MV (2017) Sci Rep 7:43006

    CAS  Article  Google Scholar 

  3. 3.

    Vig B (1971) Cancer Res 31:32

    CAS  PubMed  Google Scholar 

  4. 4.

    Von Hoff DD, Layard MW, Basa P, Davis HL, Von Hoff AL, Rozencweig M, Muggia FM (1979) Ann Intern Med 91:710

    Article  Google Scholar 

  5. 5.

    Gottesman MM, Fojo T, Bates SE (2002) Nat Rev Cancer 2:48

    CAS  Article  Google Scholar 

  6. 6.

    Hesketh PJ, Sanz-Altamira P (2012) Supportive Care Cancer 20:653

    Article  Google Scholar 

  7. 7.

    Hu J, Xie L, Zhao W, Sun M, Liu X, Gao W (2015) Chem Commun 51:11405

    CAS  Article  Google Scholar 

  8. 8.

    Zhang W, Guo Z, Huang D, Liu Z, Guo X, Zhong H (2011) Biomaterials 32:8555

    CAS  Article  Google Scholar 

  9. 9.

    Bagalkot V, Farokhzad OC, Langer R, Jon S (2006) Angew Chem 118:8329

    Article  Google Scholar 

  10. 10.

    Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Cancer Res 54:987

    CAS  PubMed  Google Scholar 

  11. 11.

    Kim D, Jeong YY, Jon S (2010) ACS Nano 4:3689

    CAS  Article  Google Scholar 

  12. 12.

    Suri SS, Fenniri H, Singh B (2007) J Occupat Med Toxicol 2:16

    Article  Google Scholar 

  13. 13.

    Cole AJ, Yang VC, David AE (2011) Trends Biotechnol 29:323

    CAS  Article  Google Scholar 

  14. 14.

    Goldberg DS, Vijayalakshmi N, Swaan PW, Ghandehari H (2011) J Control Release 150:318

    CAS  Article  Google Scholar 

  15. 15.

    Dutta T, Jain NK (2007) Biochim Biophys Acta Gen Subj 1770:681

    CAS  Article  Google Scholar 

  16. 16.

    Löbenberg R, Maas J, Kreuter J (1998) J Drug Target 5:171

    Article  Google Scholar 

  17. 17.

    Gao N, Yang W, Nie H, Gong Y, Jing J, Gao L, Zhang X (2017) Biosens Bioelectron 96:300

    CAS  Article  Google Scholar 

  18. 18.

    Singh SK, Singh S, Lillard JW Jr, Singh R (2017) Int J Nanomed 12:6205

    CAS  Article  Google Scholar 

  19. 19.

    Wang Y, Luo Y, Zhao Q, Wang Z, Xu Z, Jia X (2016) ACS Appl Mater Interfaces 8:19899

    CAS  Article  Google Scholar 

  20. 20.

    Lv R, Yang P, He F, Gai S, Yang G, Dai Y, Hou Z, Lin J (2015) Biomaterials 63:115

    CAS  Article  Google Scholar 

  21. 21.

    Lv R, Yang P, He F, Gai S, Yang G, Lin J (2015) Chem Mater 27:483

    CAS  Article  Google Scholar 

  22. 22.

    Torchilin VP (2014) Nat Rev Drug Discov 13:813

    CAS  Article  Google Scholar 

  23. 23.

    Xu HL, Mao KL, Huang YP, Yang JJ, Xu J, Chen PP, Fan ZL, Zou S, Gao ZZ, Yin JY, Xiao J, Lu CT, Zhang BL, Zhao YZ (2016) Nanoscale 8:14222

    CAS  Article  Google Scholar 

  24. 24.

    Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J (2015) Chem Rev 115:10637

    CAS  Article  Google Scholar 

  25. 25.

    Chen RJ, Chen PC, Prasannan A, Vinayagam J, Huang CC, Chou PY, Weng CC, Tsai HC, Lin SY (2016) Mater Sci Eng C 63:678

    CAS  Article  Google Scholar 

  26. 26.

    Stocke NA, Meenach SA, Arnold SM, Mansour HM, Hilt JZ (2015) Int J Pharm 479:320

    CAS  Article  Google Scholar 

  27. 27.

    Griffete N, Fresnais J, Espinosa A, Wilhelm C, Bée A, Ménager C (2015) Nanoscale 7:18891

    CAS  Article  Google Scholar 

  28. 28.

    Xing R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X (2013) Nano Res 6:1

    CAS  Article  Google Scholar 

  29. 29.

    Tian B, Liu S, Wu S, Lu W, Wang D, Jin L, Hu B, Li K, Wang Z, Quan Z (2017) Colloids Surf B 154:287

    CAS  Article  Google Scholar 

  30. 30.

    Miranda MS, Rodrigues MT, Domingues RM, Costa RR, Paz E, Rodríguez-Abreu C, Freitas P, Almeida BG, Carvalho MA, Gonçalves C (2018) Adv Healthc Mater 10:1800124

    Article  Google Scholar 

  31. 31.

    Quan Q, Xie J, Gao H, Yang M, Zhang F, Liu G, Lin X, Wang A, Eden HS, Lee S, Zhang G, Chen X (2011) Mol Pharm 8:1669

    CAS  Article  Google Scholar 

  32. 32.

    Idris MI, Zaloga J, Detsch R, Roether JA, Unterweger H, Alexiou C, Boccaccini AR (2018) Sci Rep 8:7286

    Article  Google Scholar 

  33. 33.

    Kang T, Li F, Baik S, Shao W, Ling D, Hyeon T (2017) Biomaterials 136:98

    CAS  Article  Google Scholar 

  34. 34.

    Wu M, Zhang D, Zeng Y, Wu L, Liu X, Liu J (2015) Nanotechnology 26:115102

    Article  Google Scholar 

  35. 35.

    Huang L, Ao L, Wang W, Hu D, Sheng Z, Su W (2015) Chem Commun 51:3923

    CAS  Article  Google Scholar 

  36. 36.

    Mohyuddin A, Hussain D, Najam-ul-Haq M (2017) RSC Adv 7:9476

    CAS  Article  Google Scholar 

  37. 37.

    Mrówczyński R, Jurga-Stopa J, Markiewicz R, Coy EL, Jurga S, Woźniak A (2016) RSC Adv 6:5936

    Article  Google Scholar 

Download references

Acknowledgements

The present work was financially supported by Office of Research Innovation and Commercialization (ORIC), Bahuddin Zakariya University Multan, Pakistan under Grant no. DR & EL/D-740 and Institute of Chemical Sciences, Bahuddin Zakariya University Multan, Pakistan. Dr. Miss. Saadat Majeed is very thankful to Prof. Dr. Guobao Xu CIAC, CAS Changchun, China for his mentorship and supervision during her PhD studies, and on tailoring her capabilities to run an independent research group.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tahir Rasheed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 385 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naqvi, S.T.R., Rasheed, T., Hussain, D. et al. Development of molecularly imprinted magnetic iron oxide nanoparticles for doxorubicin drug delivery. Monatsh Chem (2020). https://doi.org/10.1007/s00706-020-02644-z

Download citation

Keywords

  • Dopamine
  • Magnetic nanomaterials
  • Doxorubicin
  • Drug delivery
  • Nanocarriers