A state-of-the-art approach to synthesis of dendrite-like gold nanostructures via electrodeposition

Abstract

Gold nanostructures such as nanoparticles, nanowires, or nanotubes are highly preferred structures in electrochemical studies and can be produced by electrodeposition. This study points out that the shapes and electrochemical behaviour of electrodeposited gold nanostructures can be varied by adjusting multi-walled carbon nanotube (MWCNT) ratio in electrodeposition solution. For that, gold nanofilms on the glassy carbon electrode surface were formed from HAuCl4 solution in the presence and absence of MWCNT. In this study, the gold concentration was fixed at 0.4 ppm (10.0 mM) and only MWCNT concentration was varied. The prepared electrode surfaces were characterized and compared with each other from the point of view of electrochemical, microscopic, and spectroscopic properties. Ultimately, it was shown that each prepared electrode had different properties.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Mohan Bhagyaraj S, Oluwafemi OS (2018) Nanotechnology: the science of the invisible. In: Bhagyaraj SM, Oluwafemi OS, Kalarikkal N, Thomas S (eds) Synthesis of inorganic nanomaterials. Elsevier, Amsterdam, p 1

    Google Scholar 

  2. 2.

    Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG (2019) J Drug Deliv Sci Technol 53:101174

    CAS  Google Scholar 

  3. 3.

    Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D (2014) ACS Appl Mater Interfaces 6:8080

    CAS  PubMed  Google Scholar 

  4. 4.

    Baig N, Sajid M, Saleh TA (2019) TrAC - Trends Anal Chem 111:47

    CAS  Google Scholar 

  5. 5.

    Kumar R, Singh R, Hui D, Feo L, Fraternali F (2018) Compos Part B Eng 134:193

    CAS  Google Scholar 

  6. 6.

    Wong S-F, Khor SM (2019) TrAC - Trends Anal Chem 114:108

    CAS  Google Scholar 

  7. 7.

    Liu J, Geng Z, Fan Z, Liu J, Chen H (2019) Biosens Bioelectron 132:17

    CAS  PubMed  Google Scholar 

  8. 8.

    He S, Ma Y, Zhou J, Zeng J, Liu X, Huang Z, Chen X, Chen X (2019) Talanta 191:400

    CAS  PubMed  Google Scholar 

  9. 9.

    Nootchanat S, Lertvachirapaiboon C, Amornkitbamrung V, Uppachai P, Ekgasit S, Wongravee K (2017) Mater Des 125:158

    CAS  Google Scholar 

  10. 10.

    Sharma B, Mandani S, Sarma TK (2014) J Mater Chem B 2:4072

    CAS  PubMed  Google Scholar 

  11. 11.

    Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzahgi-Abyaneh (2015) Process Biochem 50:1076

    CAS  Google Scholar 

  12. 12.

    Vasantharaj S, Sripriya N, Shanmugavel M, Manikadan E, Gnanamani A, Senthilkumar P (2018) J Photochem Photobiol B Biol 179:119

    CAS  Google Scholar 

  13. 13.

    Narayanan KB, Sakthivel N (2010) Adv Colloid Interface Sci 156:1

    CAS  PubMed  Google Scholar 

  14. 14.

    Bhattarai B, Zaker Y, Bigioni TP (2018) Curr Opin Green Sustain Chem 12:91

    Google Scholar 

  15. 15.

    Vais RD, Karimian K, Heli H (2018) Talanta 178:704

    CAS  PubMed  Google Scholar 

  16. 16.

    Du X, Zhang Z, Miao Z, Ma M, Zhang Y, Zhang C, Wang W, Hang B, Chen Q (2015) Talanta 144:823

    CAS  PubMed  Google Scholar 

  17. 17.

    Worrall SD, Bissett MA, Hill PI, Rooney AP, Haigh SJ, Attfield MP, Dryfe RAW (2016) Electrochim Acta 222:361

    CAS  Google Scholar 

  18. 18.

    Mollamahale YB, Ghorbani M, Dolati A, Hosseini D (2018) Mater Chem Phys 213:67

    Google Scholar 

  19. 19.

    Zabihollahpoor A, Rahimnejad M, Najafpour G, Moghadamnia AA (2019) J Electroanal Chem 835:281

    CAS  Google Scholar 

  20. 20.

    Elahi N, Kamali M, Baghersad MH (2018) Talanta 184:537

    CAS  PubMed  Google Scholar 

  21. 21.

    Daruich De Souza C, Ribeiro Nogueira B, Rostelato MECM (2019) J Alloys Compd 798:714

    CAS  Google Scholar 

  22. 22.

    Yu B, Yang Q, Li H, Liu Z, Huang X, Wang Y, Chen H (2019) J Colloid Interface Sci 533:304

    CAS  PubMed  Google Scholar 

  23. 23.

    Byranvand MM, Kharat AN (2014) Mater Lett 134:64

    CAS  Google Scholar 

  24. 24.

    Luo Y, Ji X, Zhuang J, Yang W (2014) Colloids Surf A Physicochem Eng Asp 463:28

    CAS  Google Scholar 

  25. 25.

    Shu H, Cao L, Chang G, He H, Zhang Y, He Y (2014) Electrochim Acta 132:524

    CAS  Google Scholar 

  26. 26.

    Monzon LMA, Byrne F, Coey JMD (2011) J Electroanal Chem 657:54

    CAS  Google Scholar 

  27. 27.

    Dai H, Gong L, Xu G, Zhang S, Lu S, Jiang Y, Lin Y, Guo L, Chen G (2013) Electrochim Acta 111:57

    CAS  Google Scholar 

  28. 28.

    Senel M, Dervisevic M, Voelcker NH (2019) Mater Lett 243:50

    CAS  Google Scholar 

  29. 29.

    Nguyen HD, Nguyen TTL, Nguyen KM, Nguyen AM, Nguyen QH (2015) Anal Chem Res 5:14

    CAS  Google Scholar 

  30. 30.

    Wu L, Lu Z, Ye J (2019) Biosens Bioelectron 135:45

    CAS  PubMed  Google Scholar 

  31. 31.

    Pifferi V, Marona V, Longhi M, Falciola L (2013) Electrochim Acta 109:447

    CAS  Google Scholar 

  32. 32.

    Braga FL, Mattos OA, Amorin VS, Souza AB (2015) Phys A 429:28

    Google Scholar 

  33. 33.

    Kanani N (2007) Electrodeposition considered at the atomistic level. In: Kanani N (ed) Electroplating. Elsevier, Amsterdam, p 141

    Google Scholar 

  34. 34.

    Dehdari Vais R, Sattarahmady N, Karimian K, Heli H (2015) Sens Actuators B 215:113

    CAS  Google Scholar 

  35. 35.

    Witten TA, Sander LM (1981) Phys Rev Lett 47:37

    Google Scholar 

  36. 36.

    Jacob EB, Godbey R, Goldenfeld ND, Koplik J, Levine H, Mueller T, Sander LM (1985) Phys Rev Lett 55:1315

    Google Scholar 

  37. 37.

    Manu R, Priya S (2013) Appl Surf Sci 284:270

    CAS  Google Scholar 

  38. 38.

    Jyothirmayee Aravind SS, Eswaraiah V, Ramaprabhu S (2011) J Mater Chem 21:15179

    CAS  Google Scholar 

  39. 39.

    Newbury DE, Ritchie NWM (2015) J Mater Sci 50:493

    CAS  PubMed  Google Scholar 

  40. 40.

    Hu M-S, Chen H-L, Shen C-H, Hong L-S, Huang B-R, Chen K-H, Chen L-C (2006) Nat Mater 5:102

    CAS  PubMed  Google Scholar 

  41. 41.

    Anuradha J, Abbasi T, Abbasi SA (2014) J Adv Res 5:711

    Google Scholar 

Download references

Acknowledgements

This study was the part of MSc thesis of Abdurrahman Taha GULDEREN and was supported by Scientific Research Projects Coordination Unit of Selcuk University under the project number of 17201124. JB thanks for financial support the Grant Agency of the Czech Republic (project GACR 17-03868S).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jiri Barek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gulderen, A.T., Oztekin, Y. & Barek, J. A state-of-the-art approach to synthesis of dendrite-like gold nanostructures via electrodeposition. Monatsh Chem 151, 1257–1264 (2020). https://doi.org/10.1007/s00706-020-02555-z

Download citation

Keywords

  • Surface
  • Electrochemistry
  • Metals
  • Nanochemistry
  • Voltammetry