Skip to main content
Log in

Phospholipid-modified carbon fiber brush electrode for the detection of dopamine and 3,4-dihydroxyphenylacetic acid

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Different procedures for modification of carbon fiber brush electrode (CFBE) with phospholipids were investigated using cyclic voltammetry and electrochemical impedance spectroscopy. Simple immersion of the preanodized electrode into hexane solution of asolectin (a mixture of soybean phospholipids) followed by formation of the phospholipid layer in NaCl solution was the most effective procedure. Phospholipid layer-modified electrode (PL-CFBE) was applied to detect dopamine and its metabolite, 3,4 dihydroxyphenylacetic acid, using differential pulse and square-wave voltammetry in phosphate buffer solution of pH 6.5. Accumulation of dopamine, supported by electrostatic interactions between positively charged amino group and negatively charged phosphate moiety of the layer, enhanced sensitivity of PL-CFBE compared to bare CFBE. On the contrary, repulsive interaction between 3,4 dihydroxyphenylacetate anion and negatively charged phosphate moiety of the layer suppressed PL-CFBE sensitivity, measured as a slope of calibration dependence.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lombard J (2014) Biol Direct 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watson H (2015) Essays Biochem 59:43

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tomkova H, Sokolova R, Opletal T, Kucerova P, Kucera L, Souckova J, Skopalova J, Bartak P (2018) J Electroanal Chem 821:33

    Article  CAS  Google Scholar 

  4. Richter RP, Brisson A (2003) Langmuir 19:1632

    Article  CAS  Google Scholar 

  5. Navratil T, Novakova K, Josypcuk B, Sokolova R, Sestakova I (2016) Monatsh Chem 147:165

    Article  CAS  Google Scholar 

  6. Kocabova J, Kolivoska V, Gal M, Sokolova R (2018) J Electroanal Chem 821:67

    Article  CAS  Google Scholar 

  7. Nikolelis DP, Theoharis G (2003) Bioelectrochemistry 59:107

    Article  CAS  PubMed  Google Scholar 

  8. Nikolelis DP, Raftopoulou G, Chatzigeorgiou P, Nikoleli GP, Viras K (2008) Sens Actuators B 130:577

    Article  CAS  Google Scholar 

  9. Seddon AM, Casey D, Law RV, Gee A, Templer RH, Ces O (2009) Chem Soc Rev 38:2509

    Article  CAS  PubMed  Google Scholar 

  10. Nikolelis DP, Petropoulou SSE, Pergel E, Toth K (2002) Electroanalysis 14:783

    Article  CAS  Google Scholar 

  11. Chen H, Zheng Y, Jiang JH, Wu HL, Shen GL, Yu RQ (2008) Biosens Bioelectron 24:684

    Article  CAS  PubMed  Google Scholar 

  12. Marques JT, de Almeida RFM, Viana AS (2014) Electrochim Acta 126:139

    Article  CAS  Google Scholar 

  13. Fritzen-Garcia MB, Zoldan VC, Oliveira IRWZ, Soldir V, Pasa AA, Creczynski-Pasa TB (2013) Biotechnol Bioeng 110:374

    Article  CAS  PubMed  Google Scholar 

  14. Abbasi F, Leitch JJ, Su Z, Szymanski G, Lipkowski J (2018) Electrochim Acta 267:195

    Article  CAS  Google Scholar 

  15. Gabriunaite I, Valiuniene A, Valincius G (2018) Electrochim Acta 283:1351

    Article  CAS  Google Scholar 

  16. Lebegue E, Smida H, Flinois T, Vie V, Lagrost C, Barriere F (2018) J Electroanal Chem 808:286

    Article  CAS  Google Scholar 

  17. Svecova H, Souckova J, Pyszkova M, Svitkova J, Labuda J, Skopalova J, Bartak P (2014) Eur J Lipid Sci Technol 116:1247

    Article  CAS  Google Scholar 

  18. Sakaguchi N, Kimura Y, Hirano-Iwata A, Ogino T (2017) J Phys Chem B 121:4474

    Article  CAS  PubMed  Google Scholar 

  19. Andersson J, Knobloch JJ, Perkins MV, Holt SA, Köper I (2017) Langmuir 33:4444

    Article  CAS  PubMed  Google Scholar 

  20. Ayano G (2016) J Ment Disord Treat 2:120

    Article  Google Scholar 

  21. Jaber M, Robinson SW, Missale C, Caron MG (1996) Neuropharmacology 35:1503

    Article  CAS  PubMed  Google Scholar 

  22. Florang VR, Rees JN, Brogden NK, Anderson DG, Hurley TD, Doorn JA (2007) NeuroToxicology 28:76

    Article  CAS  PubMed  Google Scholar 

  23. Zachek MK, Hermans A, Wightman RM, McCarty GS (2008) J Electroanal Chem 614:113

    Article  CAS  Google Scholar 

  24. Taylor IM, Robbins EM, Catt KA, Cody PA, Happe CL, Cui XT (2017) Biosens Bioelectron 89:400

    Article  CAS  PubMed  Google Scholar 

  25. Vallone D, Picetti R, Borrelli E (2000) Neurosci Biobehav Rev 24:125

    Article  CAS  Google Scholar 

  26. Perrin DD (1965) Dissociation constants of organic bases in aqueous solution. IUPAC Chemical Data Series, no 12. Buttersworth, London

  27. Jodko-Piorecka K, Litwinienko G (2013) ACS Chem Neurosci 4:1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matam Y, Ray BD, Petrache HI (2016) Neurosci Lett 618:104

    Article  CAS  PubMed  Google Scholar 

  29. Skopalova J, Bartak P, Bednar P, Tomkova H, Ingr T, Lorencova I, Kucerova P, Papousek R, Borovcova L, Lemr K (2018) Anal Chim Acta 999:60

    Article  CAS  PubMed  Google Scholar 

  30. Součková J, Skopalová J, Švecová J, Čáp L, Bednář P, Barták P (2011) Acta Univ Palacki Olomuc Fac Rer Nat Chemica 48:8

    Google Scholar 

  31. Vernooij EAAM, Kettenes – van den Bosch JJ, Underberg WJM, Crommelin DJA (2002) J Control Release 79:299

  32. Guit M, Underberg WJM, Crommelin DJA (1993) J Pharm Sci 82:362

    Article  Google Scholar 

  33. Zhang F, Dryhurst G (1993) Bioorg Chem 21:392

    Article  CAS  Google Scholar 

  34. Fazary AE, Ju YH (2008) J Solution Chem 37:1305

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant projects of Czech Science Foundation (17–05387S) and Palacký University in Olomouc (IGA_PrF_2018_027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Skopalová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jerga, R., Müllerová, V., Štěpánková, J. et al. Phospholipid-modified carbon fiber brush electrode for the detection of dopamine and 3,4-dihydroxyphenylacetic acid. Monatsh Chem 150, 395–400 (2019). https://doi.org/10.1007/s00706-019-2371-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-2371-7

Keywords

Navigation