Skip to main content
Log in

Substitution effects on 1,3-disubstituted imidazol-2-ylidenes and 1,3-diarylimidazol-2-ylidenes revisited: a theoretical study at DFT level

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Effect of substituents on philicity and stability of 1,3-disubstituted imidazol-2-ylidenes and 1,3-diarylimidazol-2-ylidenes was assessed using the following calculations: adiabatic electron affinity and adiabatic ionization potential, global electrophilicity and differential orbital energy scales for philicity, and ΔES–T, ΔEHyd, ΔEiso, and ΔEH–L for stability, with the aid of density functional theory and the results were then compared with each other. In the case of 1,3-disubstituted imidazol-2-ylidene, the carbene with CH3 group has the highest nucleophilic character considering all the above scales and the highest thermodynamic stability. 1,3-Diarylimidazol-2-ylidenes with CH3O and NH2 groups have high-nucleophilic properties and high-stability; their ΔEiso values are also greater than 377 kJ/mol which means that they may be reasonable synthetic targets. While, the presence of electron donating groups at 1,3-disubstituted imidazol-2-ylidene results in ΔEiso > 377 kJ/mol. Nucleophilicity of 1,3-diarylimidazol-2-ylidenes is, to some extent, greater than that of 1,3-disubstituted imidazol-2-ylidenes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bourissou D, Guerret O, Gabba FP, Bertrand G (2000) Chem Rev 100:39

    Article  CAS  PubMed  Google Scholar 

  2. Moss RA (1980) Acc Chem Res 13:58

    Article  CAS  Google Scholar 

  3. Sander W, Kotting E, Hubert R (2000) J Phys Org Chem 13:561

    Article  CAS  Google Scholar 

  4. Arduengo AJ, Harlow RL, Kline M (1991) J Am Chem Soc 113:361

    Article  CAS  Google Scholar 

  5. Hopkinson MN, Richter C, Schedler M, Glorius F (2014) Nature 510:485

    Article  CAS  PubMed  Google Scholar 

  6. Hahn FE, Jahnke MC (2008) Angew Chem Int Ed 47:3122

    Article  CAS  Google Scholar 

  7. Diez-Gonzalez S, Nolan SP (2007) Coord Chem Rev 251:874

    Article  CAS  Google Scholar 

  8. Nolan SP (2006) N-Heterocyclic carbene in synthesis. Wiley-VCH Verlag, Weinheim

    Book  Google Scholar 

  9. Nolan SP (2014) Effective tools for organometallic synthesis N-heterocyclic carbenes. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  10. Glorius F (2007) N-Heterocyclic carbenes in transition metal catalysis. Springer, Berlin

    Book  Google Scholar 

  11. Visbal R, Gimeno MC (2014) Chem Soc Rev 43:3551

    Article  CAS  PubMed  Google Scholar 

  12. Mercs L, Albrecht M (2010) Chem Soc Rev 39:1903

    Article  CAS  PubMed  Google Scholar 

  13. Sen S, Schowner R, Buchmeiser MR (2015) Monatsh Chem 146:1037

    Article  CAS  Google Scholar 

  14. Meret M, Maj AM, Demonceau A, Delaude L (2015) Monatsh Chem 146:1099

    Article  CAS  Google Scholar 

  15. Pore DM, Gaikwad DS, Patil JD (2013) Monatsh Chem 144:1355

    Article  Google Scholar 

  16. Oisaki K, Li Q, Furukawa H, Czaja AU, Yaghi OMA (2010) J Am Chem Soc 132:9262

    Article  CAS  PubMed  Google Scholar 

  17. Boydston AJ, Williams KA, Bielawski CW (2005) J Am Chem Soc 127:12496

    Article  CAS  PubMed  Google Scholar 

  18. Hindi KM, Panzner MJ, Tessier CA, Cannon CL, Youngs W (2009) J Chem Rev 109:3859

    Article  CAS  Google Scholar 

  19. Doğan Ö, Kaloğlu N, Demir S, Özdemir İ, Günal S, Özdemir İ (2013) Monatsh Chem 144:313

    Article  CAS  Google Scholar 

  20. Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A (2008) J Am Chem Soc 130:12570

    Article  CAS  PubMed  Google Scholar 

  21. Su M-D, Chuang C-C (2013) Theor Chem Acc 132:1360

    Article  CAS  Google Scholar 

  22. Toro-Labbé A (2007) Theoretical aspects of chemical reactivity. Elsevier, New York

    Google Scholar 

  23. Bertrand G (2003) Carbene chemistry. Marcel Dekker Inc, New York

    Google Scholar 

  24. Moss RA (1989) Acc Chem Res 22:15

    Article  CAS  Google Scholar 

  25. Zittel PF, Ellison GB, Oneil SV, Herbst E, Lineberger WC, Rrinhardt WP (1976) J Am Chem Soc 98:3731

    Article  CAS  Google Scholar 

  26. Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) J Phys Chem A 103:8213

    Article  CAS  Google Scholar 

  27. Gilles MK, Lineberger WC, Ervin KM (1993) J Am Chem Soc 115:1031

    Article  CAS  Google Scholar 

  28. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  29. Perez P (2003) J Phys Chem A 107:522

    Article  CAS  Google Scholar 

  30. Borpuzari MP, Guha AK, Kar R (2015) Struct Chem 26:859

    Article  CAS  Google Scholar 

  31. Hammett LP (1940) Physical organic chemistry. McGraw-Hill, New York

    Google Scholar 

  32. Hammett LP (1970) Physical organic chemistry, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  33. Durr H, Nickels H, Pacala LA, Jones M Jr (1980) J Org Chem 45:973

    Article  Google Scholar 

  34. Murahashi SI, Okumura K, Naota T, Nagase S (1982) J Am Chem Soc 104:2466

    Article  CAS  Google Scholar 

  35. Spartan' 10 Windows version 1.1.0, Wavefunction, Inc., Irvine, CA

  36. Kelemen Z, Holloczki O, Olah J, Nyulaszi L (2013) RSC Adv 3:7970

    Article  CAS  Google Scholar 

  37. Koohi M, Kassaee MZ, Haerizade BN, Ghavami M, Ashenagar S (2015) J Phys Org Chem 28:514

    Article  CAS  Google Scholar 

  38. Nyulászi L, Veszprémi T, Forró A (2000) Phys Chem Chem Phys 2:3127

    Article  Google Scholar 

  39. Aihara J (1999) J Phys Chem A 103:7487 (and references therein)

    Article  CAS  Google Scholar 

  40. Domingo LR, Chamorro E, Pérez P (2008) J Org Chem 73:4615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the Research Council of Malayer and Bu-Ali Sina University, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Shiri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, A., Khorramabadi-zad, A. & Siahpur, Z. Substitution effects on 1,3-disubstituted imidazol-2-ylidenes and 1,3-diarylimidazol-2-ylidenes revisited: a theoretical study at DFT level. Monatsh Chem 149, 1971–1978 (2018). https://doi.org/10.1007/s00706-018-2265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2265-0

Keywords

Navigation