Skip to main content
Log in

Comparison of conventional and microwave-assisted synthesis of some new sulfenamides under free catalyst and ligand

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Sulfenamide and its derivatives (S–N bond) have been synthesized with classical method in the literature. However, microwave-assisted synthesis of a series of N-(substituted phenylthio), N-(benzylthio), N-(cyclothio), and N-(2-mercaptobenzimidazolyl)amines has been not in the literature yet. They have been obtained from treating some amines (4 mmol) with thiophthalimides (PhthSR, 1 mmol) using sulfur transfer reagent in the presence of 2-ethoxyethanol (β-ee, neat) under microwave irradiation at 50 °C. The scope of this reaction was shown by the efficient synthesis of sulfenamides in good to excellent yields of 70–98% under free catalyst and ligand. Nine of the synthesized sulfenamide derivatives are novel. All of the thiols react with morpholine to give corresponding sulfenamides in excellent yields of 78–98%. Thiophenol, 4-methylthiophenol, 4-chlorothiophenol, and 4-fluorothiophenol react with cyclohexylamine to give corresponding sulfenamides in high yields 81–92%. Thiophenol, 4-methylthiophenol, 4-chlorothiophenol react with pyrrolidine to give corresponding sulfenamides in good yields of 70–76%. We observed that the reaction of t-butylamine with N-(phenylthio)phthalimide gave desired sulfenamide under microwave irradiation in the presence of DPPH as radical scavenger reagent in high yield of 93%. Aniline, benzylamine, 1-hexylamine, ethanolamine, diethylamine, N-ethyl-n-butylamine, N-ethylaniline, N-benzylmethylamine, t-butylamine react with thiols to give symmetrical disulfides instead of desired products under microwave irradiation, 2-ethoxyethanol as a solvent (neat), and at 50 °C. In this study, microwave-assisted synthesis method was compared with the classical method. All the products obtained were purified with chromatographic method and the analysis of these products was confirmed with IR, 1H NMR, 13C NMR spectroscopy, MS spectrometry, and elemental methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davis FA (1973) Int J Sulfur Chem 8:71

    CAS  Google Scholar 

  2. Davis FA (2006) J Org Chem 71:8993

    Article  CAS  PubMed  Google Scholar 

  3. Brito I, Restovic A, Pedreros S, Mancilla A, Vargas D, Leon Y, Ramirez E, Arias M, Brown K, Alvarez A, Arancibia A, Lopez-Rodriguez M (2003) J Chilean Chem Soc 48:51

    Article  CAS  Google Scholar 

  4. Nti-Addae KW (2008) Synthesis and physicochemical characterization of sulfenamide prodrugs of antimicrobial oxazolidinones. PhD dissertation, Pharmaceutical Chemistry Department, University of Kansas

  5. Koval IV (1996) Russ Chem Rev 65:421

    Article  Google Scholar 

  6. Koval IV (1995) Russ Chem Rev 64:731

    Article  Google Scholar 

  7. Koval IV (1990) Russ Chem Rev 59:396

    Article  Google Scholar 

  8. Heimer NE, Field L (1970) J Org Chem 35:3012

    Article  CAS  Google Scholar 

  9. Davis FA, Fretz ER, Horner CJ (1973) J Org Chem 38:690

    Article  CAS  Google Scholar 

  10. Davis FA, Friedman AJ, Kluger EW, Skibo EB, Fretz ER, Milicia AP, Lemasters WC (1977) J Org Chem 42:967

    Article  CAS  Google Scholar 

  11. Benati L, Montevecchi PC, Spagnolo P (1986) Tetrahedron Lett 27:1739

    Article  CAS  Google Scholar 

  12. Kuehle E (1973) The chemistry of the sulfenic acids. Georg Thieme, Stuttgart

    Google Scholar 

  13. Craine L, Raban M (1989) J Am Chem Soc 89:689

    CAS  Google Scholar 

  14. Huttunen KM, Leppänen J, Laine K, Vepsäläinen J, Rautio J (2013) Eur J Pharm Sci 49:624

    Article  CAS  PubMed  Google Scholar 

  15. Caddick S (1995) Tetrahedron 51:10403

    Article  CAS  Google Scholar 

  16. Valizadeh H, Dinparast L (2012) Monatsh Chem 143:251

    Article  CAS  Google Scholar 

  17. Karakuş H, Dürüst Y (2017) Mol Divers 21:53

    Article  CAS  PubMed  Google Scholar 

  18. Adam D (2003) Nature 421:571

    Article  CAS  PubMed  Google Scholar 

  19. Küçükbay H, Yilmaz Ü, Yavuz K, Buğday N (2015) Turk J Chem 39:1265

    Article  CAS  Google Scholar 

  20. Loupy A, Petit A, Hamelin F, Texier-Boullet F, Jacquault P, Mathe’ D (1998) Synthesis 1998:1213

    Article  Google Scholar 

  21. Lidström P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225

    Article  Google Scholar 

  22. Varma RS (1999) Green Chem 1:43

    Article  CAS  Google Scholar 

  23. Kappe CO (2004) Angew Chem Int Ed 43:6250

    Article  CAS  Google Scholar 

  24. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, p 2

    Google Scholar 

  25. Harpp DN, Back TG (1971) Tetrahedron Lett 52:4953

    Article  Google Scholar 

  26. Kharasch K, Potempa SJ, Wehrmeister HL (1946) Chem Rev 39:269

    Article  CAS  PubMed  Google Scholar 

  27. Shimizu M, Fukazawa H, Shimada S, Abe Y (2006) Tetrahedron 62:2175

    Article  CAS  Google Scholar 

  28. Senning A, Boureghda A, Abdel-Megeed MF, Jensen B, Nielsen B, Jensen AK (1991) Sulfur Lett 13:187

    CAS  Google Scholar 

  29. Davis FA, Nadir UK (1979) Org Prep Proced Int 11:33

    CAS  Google Scholar 

  30. Taniguchi N (2010) Eur J Org Chem 2010:2670

    Article  CAS  Google Scholar 

  31. Taniguchi N (2017) Tetrahedron 73:2030

    Article  CAS  Google Scholar 

  32. Rattanangkool E, Krailat W, Vilaivan T, Phuwapraisirisan P, Sukwattanasinitt M, Wacharasindhu S (2014) Eur J Org Chem 2014:4795

    Article  CAS  Google Scholar 

  33. Klose J, Reese CB, Song Q (1997) Tetrahedron 53:14411

    Article  CAS  Google Scholar 

  34. Kutuk H, Turkoz N (2011) Phosphorus Sulfur Silicon Relat Elem 186:1515

    Article  CAS  Google Scholar 

  35. Kutuk H, Yakan H (2011) Phosphorus Sulfur Silicon Relat Elem 186:1460

    Article  CAS  Google Scholar 

  36. Turkoz-Karakullukcu N, Yakan H, Ozturk S, Kutuk H (2013) Phosphorus Sulfur Silicon Relat Elem 188:1576

    Article  CAS  Google Scholar 

  37. Taniguchi N (2007) Synlett 2007:1917

    Article  CAS  Google Scholar 

  38. Dunbar JE, Rogers JH (1966) J Org Chem 31:2842

    Article  CAS  Google Scholar 

  39. Kadoma Y, Murakami Y, Ogiwara T, Machino M, Yokoe I, Fujisawa S (2010) Molecules 15:1103

    Article  CAS  PubMed  Google Scholar 

  40. Fujisawa S, Kadoma Y, Yokoe I (2004) Chem Phys Lipids 130:189

    Article  CAS  PubMed  Google Scholar 

  41. Halliwell B (1994) Nutr Rev 52:257

    Google Scholar 

  42. Bondet V, Brand-Williams W, Berset C (1997) Lebensm Wiss Technol 30:609

    Article  CAS  Google Scholar 

  43. Suwa S, Sakamoto T, Kikugawa Y (1999) Chem Pharm Bull 47:980

    Article  CAS  Google Scholar 

  44. Tanaka T, Azuma T, Fang X, Uchida S, Iwata C, Ishida T, In Y, Maezaki N (2000) Synlett 2000:33

    Article  Google Scholar 

  45. Clennan EL, Zhang H (1995) J Am Chem Soc 117:4218

    Article  CAS  Google Scholar 

  46. Levchenko ES, Dubinina TN, Sereda SV, Antipin MY, Struchkov YT, Boldeskul IE (1987) Russ J Org Chem 23:86

    CAS  Google Scholar 

  47. Torii S, Tanaka H, Ukida X (1979) J Org Chem 44:1554

    Article  CAS  Google Scholar 

  48. Maeda S, Samukawa S, Kobayashi H (1964) Benzimidazole derivatives. Patent JP 39015834, Aug 5, 1964; (1965) Chem Abstr 62:36857

Download references

Acknowledgements

We would like to thank Ondokuz Mayis University (Grant No. PYO.FEN.1904.10.024) for its financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Yakan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3846 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakan, H., Kütük, H. Comparison of conventional and microwave-assisted synthesis of some new sulfenamides under free catalyst and ligand. Monatsh Chem 149, 2047–2057 (2018). https://doi.org/10.1007/s00706-018-2261-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2261-4

Keywords

Navigation