Skip to main content
Log in

Investigation of carbon monoxide catalytic oxidation on vanadium-embedded graphene

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Mechanistic aspects of the catalytic oxidation of CO over V-embedded graphene have been investigated by means of density functional theory calculations. Both doublet and quartet state potential energy surfaces are examined in detail. The present results show that the title reaction start with the activation of an oxygen molecule as: O2 → O2 act. The CO oxidation over the catalyst surface proceeds through the following elementary steps: (a) O2act + CO → CO2 + Oads; (b) Oads + CO → CO2. As all of the doublet species involved in the reaction lie below the quartet potential energy surface, the reaction is expected to occur over the doublet one more favorable. The V-embedded graphene shows good catalytic activity for the CO oxidation via the Eley–Rideal mechanism with a three-step route. The present results may be helpful in understanding the mechanism of CO oxidation over metal-decorated graphene and further experimental design of low-cost catalyst in CO emission.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Royer S, Duprez D (2011) ChemCatChem 3:24

    Article  CAS  Google Scholar 

  2. Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, HunKwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Nat Commun 5:4885

    Article  CAS  PubMed  Google Scholar 

  3. Eichler A (2002) Surf Sci 498:314

    Article  CAS  Google Scholar 

  4. Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Cheminform 50:10064

    CAS  Google Scholar 

  5. Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) Phys Chem Chem Phys 15:7768

    Article  CAS  PubMed  Google Scholar 

  6. Esrafili MD, Saeidi N, Nematollahi P (2016) Chem Phys Lett 658:146

    Article  CAS  Google Scholar 

  7. Lu YH, Zhou M, Zhang C, Feng YP (2009) J Phys Chem C 113:20156

    Article  CAS  Google Scholar 

  8. Hendriksen B, Frenken J (2002) Phys Rev Lett 89:046101

    Article  CAS  PubMed  Google Scholar 

  9. Su HY, Yang MM, Bao XH, Li WX (2008) J Phys Chem C 112:17303

    Article  CAS  Google Scholar 

  10. Liu W, Zhu Y, Lian J, Jiang Q (2007) J Phys Chem C 111:1005

    Article  CAS  Google Scholar 

  11. Liu DJ (2007) J Phys Chem C 111:14698

    Article  CAS  Google Scholar 

  12. Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499

    Article  CAS  PubMed  Google Scholar 

  13. Chang CM, Cheng C, Wei CM (2008) J Chem Phys 128:124710

    Article  CAS  PubMed  Google Scholar 

  14. Molina L, Hammer B (2003) Phys Rev Lett 90:206102

    Article  CAS  PubMed  Google Scholar 

  15. Esrafili MD, Nematollahi P, Nurazar R (2016) Superlattice Microst 92:60

    Article  CAS  Google Scholar 

  16. Huang C, Ye X, Chen C, Lin S, Xie D (2013) Comput Theor Chem 1011:5

    Article  CAS  Google Scholar 

  17. Tang Y, Yang Z, Dai X (2012) Phys Chem Chem Phys 14:16566

    Article  CAS  PubMed  Google Scholar 

  18. Du J, Wu G, Wang J (2010) J Phys Chem A 114:10508

    Article  CAS  PubMed  Google Scholar 

  19. Li YF, Zhao JJ, Chen ZF (2012) J Phys Chem C 116:2507

    Article  CAS  Google Scholar 

  20. Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) J Phys Chem C 114:6250

    Article  CAS  Google Scholar 

  21. Wannakao S, Nongnual T, Khongpracha P, Maihom T, Limtrakul J (2012) J Phys Chem C 116:16992

    Article  CAS  Google Scholar 

  22. Zhao P, Su Y, Zhang Y, Li SJ, Chen G (2011) Chem Phys Lett 515:159

    Article  CAS  Google Scholar 

  23. Esrafili MD, Nematollahi P, Abdollahpour H (2016) Appl Surf Sci 378:418

    Article  CAS  Google Scholar 

  24. Song EH, Wen Z, Jiang Q (2011) J Phys Chem C 115:3678

    Article  CAS  Google Scholar 

  25. Wang L, Luo Q, Zhang W, Yang J (2014) Int J Hydrogen Energy 39:20190

    Article  CAS  Google Scholar 

  26. Zhao JX, Chen Y, Fu HG (2012) Theor Chem Acc 131:1242

    Article  CAS  Google Scholar 

  27. Tang YN, Liu ZY, Dai XQ, Yang ZX, Chen WG, Ma DW, Lu ZS (2014) Appl Surf Sci 308:402

    Article  CAS  Google Scholar 

  28. Oubal M, Picaud S, Rayez MT, Rayez JC (2013) Comput Theor Chem 1016:22

    Article  CAS  Google Scholar 

  29. Wanno B, Tabtimsai C (2014) Superlattice Microst 67:110

    Article  CAS  Google Scholar 

  30. Fattahi M, Kazemeini M, Khorasheh F, Rashidi A (2014) J Ind Eng Chem 20:2236

    Article  CAS  Google Scholar 

  31. Lemonidou AA, Machli M (2007) Catal Today 127:132

    Article  CAS  Google Scholar 

  32. Soria MA, Delsarte S, Gaigneaux EM, Ruiz P (2007) Appl Catal A Gen 325:296

    Article  CAS  Google Scholar 

  33. Mitra B, Wachs IE, Deo G (2006) J Catal 240:151

    Article  CAS  Google Scholar 

  34. Yang SW, Iglesia E, Bell AT (2005) J Phys Chem B 109:8987

    Article  CAS  PubMed  Google Scholar 

  35. Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041

    Article  CAS  Google Scholar 

  36. Dai GL, Fan KN (2006) Chem Phys 330:146

    Article  CAS  Google Scholar 

  37. Dai GL, Liu ZP, Wang WN, Lu J, Fan KN (2008) J Phys Chem C 112:3719

    Article  CAS  Google Scholar 

  38. Dai GL, Li ZH, Lu J, Wang WN, Fan KN (2012) J Phys Chem C 116:807

    Article  CAS  Google Scholar 

  39. Dai GL, Li ZH, Wang WN, Liu J, Fan KN (2013) Chin J Catal 34:906

    Article  CAS  Google Scholar 

  40. Zhang BK, Liu J, Dai GL, Chang M, Zheng CG (2015) Proc Combust Inst 35:2855

    Article  CAS  Google Scholar 

  41. Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Phys Rev Lett 102:126807

    Article  CAS  PubMed  Google Scholar 

  42. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899

    Article  CAS  Google Scholar 

  43. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  44. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, Wallingford

    Google Scholar 

  45. Zhao WH, Yang LJ, Qing LH, Lv XM, Yi LY, Li H, Chen ZQ (2015) Comput Theor Chem 1068:1

    Article  CAS  Google Scholar 

  46. Lu T, Chen FW (2012) J Comp Chem 33:580

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National University of Innovative Pilot Projects (201610332014), Jiangsu Overseas Visiting Scholar program for University Prominent Young and Middle-aged Teachers and Presidents, and the National Science Foundations of China (21203135). The computing center for Fudan University and Compute Canada is thanked for computer time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Liang Dai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, JY., Shen, JS., Chen, L. et al. Investigation of carbon monoxide catalytic oxidation on vanadium-embedded graphene. Monatsh Chem 149, 1349–1356 (2018). https://doi.org/10.1007/s00706-018-2181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2181-3

Keywords

Navigation