Investigation of carbon monoxide catalytic oxidation on vanadium-embedded graphene

  • Ji-Yu Tang
  • Jia-Sheng Shen
  • Lei Chen
  • Jia-Wei Jiang
  • Jia Lu
  • Xin Zhao
  • Guo-Liang Dai
Original Paper
  • 24 Downloads

Abstract

Mechanistic aspects of the catalytic oxidation of CO over V-embedded graphene have been investigated by means of density functional theory calculations. Both doublet and quartet state potential energy surfaces are examined in detail. The present results show that the title reaction start with the activation of an oxygen molecule as: O2 → O2 act. The CO oxidation over the catalyst surface proceeds through the following elementary steps: (a) O2act + CO → CO2 + Oads; (b) Oads + CO → CO2. As all of the doublet species involved in the reaction lie below the quartet potential energy surface, the reaction is expected to occur over the doublet one more favorable. The V-embedded graphene shows good catalytic activity for the CO oxidation via the Eley–Rideal mechanism with a three-step route. The present results may be helpful in understanding the mechanism of CO oxidation over metal-decorated graphene and further experimental design of low-cost catalyst in CO emission.

Graphical abstract

Keywords

DFT Reaction pathway Vanadium Graphene 

Notes

Acknowledgements

This work was supported by the National University of Innovative Pilot Projects (201610332014), Jiangsu Overseas Visiting Scholar program for University Prominent Young and Middle-aged Teachers and Presidents, and the National Science Foundations of China (21203135). The computing center for Fudan University and Compute Canada is thanked for computer time.

Supplementary material

706_2018_2181_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 20 kb)

References

  1. 1.
    Royer S, Duprez D (2011) ChemCatChem 3:24CrossRefGoogle Scholar
  2. 2.
    Peterson EJ, DeLaRiva AT, Lin S, Johnson RS, Guo H, Miller JT, HunKwak J, Peden CH, Kiefer B, Allard LF, Ribeiro FH, Datye AK (2014) Nat Commun 5:4885CrossRefGoogle Scholar
  3. 3.
    Eichler A (2002) Surf Sci 498:314CrossRefGoogle Scholar
  4. 4.
    Freund HJ, Meijer G, Scheffler M, Schlogl R, Wolf M (2011) Cheminform 50:10064Google Scholar
  5. 5.
    Johnson RS, DeLaRiva A, Ashbacher V, Halevi B, Villanueva CJ, Smith GK, Lin S, Datye AK, Guo H (2013) Phys Chem Chem Phys 15:7768CrossRefGoogle Scholar
  6. 6.
    Esrafili MD, Saeidi N, Nematollahi P (2016) Chem Phys Lett 658:146CrossRefGoogle Scholar
  7. 7.
    Lu YH, Zhou M, Zhang C, Feng YP (2009) J Phys Chem C 113:20156CrossRefGoogle Scholar
  8. 8.
    Hendriksen B, Frenken J (2002) Phys Rev Lett 89:046101CrossRefGoogle Scholar
  9. 9.
    Su HY, Yang MM, Bao XH, Li WX (2008) J Phys Chem C 112:17303CrossRefGoogle Scholar
  10. 10.
    Liu W, Zhu Y, Lian J, Jiang Q (2007) J Phys Chem C 111:1005CrossRefGoogle Scholar
  11. 11.
    Liu DJ (2007) J Phys Chem C 111:14698CrossRefGoogle Scholar
  12. 12.
    Wallace WT, Whetten RL (2002) J Am Chem Soc 124:7499CrossRefGoogle Scholar
  13. 13.
    Chang CM, Cheng C, Wei CM (2008) J Chem Phys 128:124710CrossRefGoogle Scholar
  14. 14.
    Molina L, Hammer B (2003) Phys Rev Lett 90:206102CrossRefGoogle Scholar
  15. 15.
    Esrafili MD, Nematollahi P, Nurazar R (2016) Superlattice Microst 92:60CrossRefGoogle Scholar
  16. 16.
    Huang C, Ye X, Chen C, Lin S, Xie D (2013) Comput Theor Chem 1011:5CrossRefGoogle Scholar
  17. 17.
    Tang Y, Yang Z, Dai X (2012) Phys Chem Chem Phys 14:16566CrossRefGoogle Scholar
  18. 18.
    Du J, Wu G, Wang J (2010) J Phys Chem A 114:10508CrossRefGoogle Scholar
  19. 19.
    Li YF, Zhao JJ, Chen ZF (2012) J Phys Chem C 116:2507CrossRefGoogle Scholar
  20. 20.
    Li Y, Zhou Z, Yu G, Chen W, Chen Z (2010) J Phys Chem C 114:6250CrossRefGoogle Scholar
  21. 21.
    Wannakao S, Nongnual T, Khongpracha P, Maihom T, Limtrakul J (2012) J Phys Chem C 116:16992CrossRefGoogle Scholar
  22. 22.
    Zhao P, Su Y, Zhang Y, Li SJ, Chen G (2011) Chem Phys Lett 515:159CrossRefGoogle Scholar
  23. 23.
    Esrafili MD, Nematollahi P, Abdollahpour H (2016) Appl Surf Sci 378:418CrossRefGoogle Scholar
  24. 24.
    Song EH, Wen Z, Jiang Q (2011) J Phys Chem C 115:3678CrossRefGoogle Scholar
  25. 25.
    Wang L, Luo Q, Zhang W, Yang J (2014) Int J Hydrogen Energy 39:20190CrossRefGoogle Scholar
  26. 26.
    Zhao JX, Chen Y, Fu HG (2012) Theor Chem Acc 131:1242CrossRefGoogle Scholar
  27. 27.
    Tang YN, Liu ZY, Dai XQ, Yang ZX, Chen WG, Ma DW, Lu ZS (2014) Appl Surf Sci 308:402CrossRefGoogle Scholar
  28. 28.
    Oubal M, Picaud S, Rayez MT, Rayez JC (2013) Comput Theor Chem 1016:22CrossRefGoogle Scholar
  29. 29.
    Wanno B, Tabtimsai C (2014) Superlattice Microst 67:110CrossRefGoogle Scholar
  30. 30.
    Fattahi M, Kazemeini M, Khorasheh F, Rashidi A (2014) J Ind Eng Chem 20:2236CrossRefGoogle Scholar
  31. 31.
    Lemonidou AA, Machli M (2007) Catal Today 127:132CrossRefGoogle Scholar
  32. 32.
    Soria MA, Delsarte S, Gaigneaux EM, Ruiz P (2007) Appl Catal A Gen 325:296CrossRefGoogle Scholar
  33. 33.
    Mitra B, Wachs IE, Deo G (2006) J Catal 240:151CrossRefGoogle Scholar
  34. 34.
    Yang SW, Iglesia E, Bell AT (2005) J Phys Chem B 109:8987CrossRefGoogle Scholar
  35. 35.
    Rozanska X, Fortrie R, Sauer J (2007) J Phys Chem C 111:6041CrossRefGoogle Scholar
  36. 36.
    Dai GL, Fan KN (2006) Chem Phys 330:146CrossRefGoogle Scholar
  37. 37.
    Dai GL, Liu ZP, Wang WN, Lu J, Fan KN (2008) J Phys Chem C 112:3719CrossRefGoogle Scholar
  38. 38.
    Dai GL, Li ZH, Lu J, Wang WN, Fan KN (2012) J Phys Chem C 116:807CrossRefGoogle Scholar
  39. 39.
    Dai GL, Li ZH, Wang WN, Liu J, Fan KN (2013) Chin J Catal 34:906CrossRefGoogle Scholar
  40. 40.
    Zhang BK, Liu J, Dai GL, Chang M, Zheng CG (2015) Proc Combust Inst 35:2855CrossRefGoogle Scholar
  41. 41.
    Krasheninnikov AV, Lehtinen PO, Foster AS, Pyykko P, Nieminen RM (2009) Phys Rev Lett 102:126807CrossRefGoogle Scholar
  42. 42.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899CrossRefGoogle Scholar
  43. 43.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  44. 44.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, WallingfordGoogle Scholar
  45. 45.
    Zhao WH, Yang LJ, Qing LH, Lv XM, Yi LY, Li H, Chen ZQ (2015) Comput Theor Chem 1068:1CrossRefGoogle Scholar
  46. 46.
    Lu T, Chen FW (2012) J Comp Chem 33:580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ji-Yu Tang
    • 1
  • Jia-Sheng Shen
    • 2
  • Lei Chen
    • 1
  • Jia-Wei Jiang
    • 1
  • Jia Lu
    • 1
  • Xin Zhao
    • 1
  • Guo-Liang Dai
    • 1
  1. 1.Jiangsu Key Laboratory for Environment Functional Materials, School of Chemistry, Biology and Material EngineeringSuzhou University of Science and TechnologySuzhouPeople’s Republic of China
  2. 2.Jiangsu Academy of Safety Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations