Chromatographic separations based on tartaric acid and its derivatives

  • Ladislav Habala
  • Renáta Horáková
  • Ružena Čižmáriková
Review
  • 10 Downloads

Abstract

The enormous importance of chirality in chemistry, biology, and pharmacology is well established today. In particular, the often considerably different bioactivities of individual enantiomers of chiral drugs necessitate their separation and independent evaluation. Tartaric acid played an eminent role in the evolution of stereochemistry as well as in the development of enantioseparation techniques. This brief survey deals with the application of tartaric acid and its derivatives in various chromatographic separation methods, such as HPLC, GC, and TLC, with focus on the more recent literature. It is based on a contribution presented at the 46th EuroCongress on Drug Synthesis and Analysis, 2017 in Bratislava, Slovakia.

Graphical abstract

Keywords

Tartaric acid Chirality Enantiomeric resolution Chromatography Chiral selector 

Notes

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0516-12.

References

  1. 1.
    Jacques J, Collet A, Wilen SH (1981) Enantiomers, racemates and resolutions. Wiley, New YorkGoogle Scholar
  2. 2.
    Toda F (ed) (2004) Enantiomer separation. Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. 3.
    Collins AN, Sheldrake GN, Crosby J (eds) (1992) Chirality in industry. Wiley, New YorkGoogle Scholar
  4. 4.
    Blair GT, DeFraties JJ (2000) Hydroxy dicarboxylic acids. In: Kirk-Othmer Encyclopedia of chemical technology, Wiley, New YorkGoogle Scholar
  5. 5.
    Kassaian JM (2012) Tartaric acid. In: Ullmann’s encyclopedia of industrial chemistry, Wiley, New YorkGoogle Scholar
  6. 6.
    Gal J (2013) Helv Chim Acta 96:1617CrossRefGoogle Scholar
  7. 7.
    Kauffman GB, Myers RD (1998) Chem Educ 3:1Google Scholar
  8. 8.
    Derewenda ZS (2008) Acta Cryst A64:246CrossRefGoogle Scholar
  9. 9.
    Flack HD (2009) Acta Cryst A65:371CrossRefGoogle Scholar
  10. 10.
    Fogassy E, Nógrádi M, Kozma D, Egri G, Pálovics E, Kiss V (2006) Org Biomol Chem 4:3011CrossRefGoogle Scholar
  11. 11.
    Siedlecka R (2013) Tetrahedron 69:6331CrossRefGoogle Scholar
  12. 12.
    Faigl F, Fogassy E, Nógrádi M, Pálovics E, Schindler J (2008) Tetrahedron Asymmetry 19:519CrossRefGoogle Scholar
  13. 13.
    Fogassy E, Nógrádi M, Kozma D, Egri G, Pálovics E, Kiss V (2006) Org Biomol Chem 4:3011CrossRefGoogle Scholar
  14. 14.
    Pálovics E, Faigl F, Fogassy E (2012) Separation of the mixtures of chiral compounds by crystallization. In: Mastai Y (ed), Advances in crystallization processes. InTechOpen.  https://doi.org/10.5772/33592
  15. 15.
    Kovári Z, Böcskei Z, Kassai C, Fogassy E, Kozma D (2004) Chirality 16:S23CrossRefGoogle Scholar
  16. 16.
    Miyamoto H, Sakamoto M, Yoshioka K, Takaoka R, Toda F (2000) Tetrahedron Asymmetry 11:3045CrossRefGoogle Scholar
  17. 17.
    Easson EH, Stedman E (1933) Biochem J 27:1257CrossRefGoogle Scholar
  18. 18.
    Berthod A (2006) Anal Chem 78:2093CrossRefGoogle Scholar
  19. 19.
    Yokokawa S, Tamada K, Hara M (2006) J Nanosci Nanotechnol 6:1772CrossRefGoogle Scholar
  20. 20.
    Bonanni M, Soldaini G, Faggi C, Goti A, Cardona F (2009) Synlett 5:747Google Scholar
  21. 21.
    Schuur B, Verkuijl BJV, Minnaard AJ, de Vries JG, Heeres HJ, Feringa BL (2011) Org Biomol Chem 9:36CrossRefGoogle Scholar
  22. 22.
    Steensma M, Kuipers NJM, de Haan AB, Kwant G (2006) Chirality 18:314CrossRefGoogle Scholar
  23. 23.
    Gawronski J, Gawronska K (1999) Tartaric and malic acids in synthesis. A source book of building blocks, ligands, auxiliaries, and resolving agents. Wiley, New YorkGoogle Scholar
  24. 24.
    Seyden-Penne J (1995) Chiral auxiliaries and ligands in asymmetric synthesis. Wiley, New YorkGoogle Scholar
  25. 25.
    Ghosh AK, Koltun ES, Bilcer G (2001) Synthesis 9:1281CrossRefGoogle Scholar
  26. 26.
    Sharpless KB (2002) Angew Chem Int Ed 41:2024CrossRefGoogle Scholar
  27. 27.
    Seebach D, Beck AK, Heckel A (2001) Angew Chem Int Ed 40:92CrossRefGoogle Scholar
  28. 28.
    Abe I, Musha S (1974) Bunseki Kagaku 23:755CrossRefGoogle Scholar
  29. 29.
    Knierzinger A, Walther W, Weber B, Müller RK, Netscher T (1990) Helv Chim Acta 73:1087CrossRefGoogle Scholar
  30. 30.
    Karagounis G, Lippold G (1959) Naturwissenschaften 46:145CrossRefGoogle Scholar
  31. 31.
    Goldberg G, Ross WA (1962) Chem Ind (London) 657Google Scholar
  32. 32.
    Nakamura K, Hara S, Dobashi Y (1989) Anal Chem 81:2121CrossRefGoogle Scholar
  33. 33.
    Nakamura K, Saeki T, Matsuo M, Hara S, Dobashi Y (1990) Anal Chem 62:539CrossRefGoogle Scholar
  34. 34.
    Dobashi Y, Nakamura K, Saeki T, Matsuo M, Hara S, Dobashi Y (1991) J Org Chem 56:3299CrossRefGoogle Scholar
  35. 35.
    Binet S, Dreux J, Longeray R (1984) Chromatographia 18:294CrossRefGoogle Scholar
  36. 36.
    Berrod G, Bourdon J, Dreux J, Longeray R, Moreau M, Schifter P (1979) Chromatographia 12:150CrossRefGoogle Scholar
  37. 37.
    Oi N, Kitahara H, Doi T (1981) J Chromatogr 207:252CrossRefGoogle Scholar
  38. 38.
    Siouffi A-M, Piras P, Roussel C (2005) J Planar Chromatogr 18:5CrossRefGoogle Scholar
  39. 39.
    Del Bubba M, Checchini L, Lepri L (2013) Anal Bioanal Chem 405:533CrossRefGoogle Scholar
  40. 40.
    Peng DM, Yu L, Yu JG, Jiao FP, Peng ZG, Zhang T (2013) Curr Nanosci 9:631CrossRefGoogle Scholar
  41. 41.
    Čižmáriková R, Bruchatá K, Pastírová Z, Lehotay J, Hroboňová K (2010) Pharmazie 65:386Google Scholar
  42. 42.
    Lučić B, Radulović D, Vujić Z, Agbaba D (2005) J Planar Chromatogr 18:294CrossRefGoogle Scholar
  43. 43.
    Salama NH, Zaazaa HE, Abd El Halim LM, Salem MY, Abd El Fattah LE (2016) J Planar Chromatogr 29:176CrossRefGoogle Scholar
  44. 44.
    Bhushan R, Agarwal C (2008) Biomed Chromatogr 22:1237CrossRefGoogle Scholar
  45. 45.
    Bhushan R, Tanwar S (2008) Biomed Chromatogr 22:1028CrossRefGoogle Scholar
  46. 46.
    Bhushan R, Agarwal C (2010) Biomed Chromatogr 24:1152CrossRefGoogle Scholar
  47. 47.
    Bhushan R, Agarwal C (2008) Chromatographia 68:1045CrossRefGoogle Scholar
  48. 48.
    Bhatt NM, Chavada VD, Sanyal M, Shrivastav PS (2017) Chirality 29:80CrossRefGoogle Scholar
  49. 49.
    Struys EA, Jansen EEW, Verhoeven NM, Jakobs C (2004) Clin Chem 50:1391CrossRefGoogle Scholar
  50. 50.
    Poinsignon V, Mercier L, Nakabayashi K, David MD, Lalli A, Penard-Lacronique V, Quivoron C, Saada V, De Botton S, Broutin S, Paci A (2016) J Chromatogr B 1022:290CrossRefGoogle Scholar
  51. 51.
    Liu X, Zhang Y, Yuan M, Sun Y (2012) J Chromatogr B 907:140CrossRefGoogle Scholar
  52. 52.
    Zhao J, Shin Y, Jin Y, Jeong KM, Lee J (2017) J Chromatogr B 1040:199CrossRefGoogle Scholar
  53. 53.
    Brocks DR, Dennis MJ, Schaefer WH (1995) J Pharm Biomed Anal 13:911CrossRefGoogle Scholar
  54. 54.
    Bhushan R, Tanwar S, Dixit S (2011) Biomed Chromatogr 25:398CrossRefGoogle Scholar
  55. 55.
    Fekete J, Milen M, Hazai L, Poppe L, Szántay C, Kettrup A, Gebefügi I (2003) Chromatographia 57:147CrossRefGoogle Scholar
  56. 56.
    Lindner W, Hirschböck I (1984) J Pharm Biomed Anal 2:183CrossRefGoogle Scholar
  57. 57.
    Oi N, Kitahara H, Aoki F (1993) J Liquid Chromatogr 16:893CrossRefGoogle Scholar
  58. 58.
    Oi N, Kitahara H, Aoki F (1994) J Chromatogr A 666:457CrossRefGoogle Scholar
  59. 59.
    Oi N, Kitahara H, Aoki F (1995) J Chromatogr A 707:380CrossRefGoogle Scholar
  60. 60.
    Allenmark SG, Andersson S, Möller P, Sanchez D (1995) Chirality 7:248CrossRefGoogle Scholar
  61. 61.
    Andersson S, Allenmark S, Möller P, Persson B, Sanchez D (1996) J Chromatogr A 741:23CrossRefGoogle Scholar
  62. 62.
    Weng W, Zeng Q, Yao B, Wang Q, Li S (2005) Chromatographia 61:561CrossRefGoogle Scholar
  63. 63.
    Weng W, Wang QH, Yao BX, Zeng QL (2004) J Chromatogr 1042:81CrossRefGoogle Scholar
  64. 64.
    Aboul-Enein HY (2003) J Sep Sci 26:521CrossRefGoogle Scholar
  65. 65.
    Bao Z, Su B, Ren Q (2008) J Sep Sci 31:16CrossRefGoogle Scholar
  66. 66.
    Legrand S, Heikkinen H, Nicholls IA, Root A, Svenson J, Unelius CR (2010) Tetrahedron Lett 51:2258CrossRefGoogle Scholar
  67. 67.
    Luo J, Wang Q, Zhang Y, Song H, Yao S (2011) Am Lab 43:11Google Scholar
  68. 68.
    Wu H, Ji S, Yang B, Yu H, Jin Y, Ke Y, Liang X (2012) J Sep Sci 35:351CrossRefGoogle Scholar
  69. 69.
    Wei WJ, Deng HW, Chen W, Bai ZW, Li SR (2010) Chirality 22:604Google Scholar
  70. 70.
    Oxelbark J, Gidlund P (2005) Chirality 17:79CrossRefGoogle Scholar
  71. 71.
    Monser LI, Greenway GM, Ewing DF (1996) Tetrahedron Asymmetry 7:1189CrossRefGoogle Scholar
  72. 72.
    Wijeratne AB, Spencer SE, Gracia J, Armstrong DW, Schug KA (2009) J Am Soc Mass Spectrom 20:2100CrossRefGoogle Scholar
  73. 73.
    Kim HJ, Choi HJ, Cho YJ, Hyun MH (2010) Bull Korean Chem Soc 31:1551CrossRefGoogle Scholar
  74. 74.
    Chen J, Li MZ, Xiao YH, Chen W, Li SR, Bai ZW (2011) Chirality 23:228CrossRefGoogle Scholar
  75. 75.
    Zou Y, Wang L, Liu Q, Liu H, Li F (2015) Chromatographia 78:753CrossRefGoogle Scholar
  76. 76.
    Heldin E, Huynh NH, Pettersson C (1991) J Chromatogr 585:35CrossRefGoogle Scholar
  77. 77.
    Heldin E, Lindner KJ, Petterson C, Lindner W, Rao R (1991) Chromatographia 32:407CrossRefGoogle Scholar
  78. 78.
    He H, Xu X, Zhang D, Chen J (2005) Analyt Chim Acta 536:15CrossRefGoogle Scholar
  79. 79.
    Yang J, Wang L, Guo Q, Yang G (2012) Chin J Chromatogr 30:280CrossRefGoogle Scholar
  80. 80.
    Hu SQ, Chen YL, Zhu HD, Shi HJ, Yan N, Chen XG (2010) J Chromatogr A 1217:5529CrossRefGoogle Scholar
  81. 81.
    Cai Y, Yan ZH, Zi M, Yuan LM (2007) J Liq Chromatogr Relat Technol 30:1489CrossRefGoogle Scholar
  82. 82.
    Sun G, Tang K, Zhang P, Yang W, Sui G (2014) J Sep Sci 37:1736CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Theory of Drugs, Faculty of PharmacyComenius UniversityBratislavaSlovakia

Personalised recommendations