Synthesis and investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones

  • Maryna Stasevych
  • Viktor Zvarych
  • Volodymyr Lunin
  • Nazarii Kopak
  • Olena Komarovska-Porokhnyavets
  • Nahide Gulsah Deniz
  • Cigdem Sayil
  • Mustafa Ozyurek
  • Kubilay Guclu
  • Mykhailo Vovk
  • Volodymyr Novikov
Original Paper
  • 23 Downloads

Abstract

The new anthraquinonylhydrazones were obtained by the interaction of 9,10-dioxoanthracene-1-diazonium sulfates with a number of α- and β-carbonyl-containing compounds under modified conditions of the Japp–Klingemann reaction, and a probable mechanism of the formation has been proposed. It was found that hydrazones, unsaturated in the second position of the anthraquinone ring, containing acetyl or ethoxycarbonyl moieties in the ylidene part of the molecule, are capable of eliminating these fragments. It has been experimentally established that hydrazones, free rotation around the N=C bond of which is possible, exist as one isomer due to the presence of an intramolecular hydrogen bond in the molecule. The anthraquinonylhydrazone of dimedone with action against the bacteria strains of Staphylococcus aureus 209-P, Mycobacterium luteum B-917, and fungus Candida tenuis VKM Y-70 was found. The hydrazones of dimedone and barbituric acid with a higher trolox equivalent antioxidant coefficients of antioxidant action were found using CUPRAC assay. In addition, the hydrazones of dimedone and barbituric acid exhibited better activity against catalase enzyme. Correlations between the structure of the synthesized hydrazones and their antioxidant activity have been defined.

Graphical abstract

Keywords

9,10-Dioxoanthracene-1-diazonium sulfates Hydrazones Antimicrobial activity Antioxidant activity TEAC Catalase enzyme activity 

Notes

Acknowledgements

The authors would like to express their gratitude to the Ministry of Education and Science of Ukraine, Scientific Research Project (Project number: 0116U004138) for financial support.

References

  1. 1.
    Belskaya N, Dehaen W, Bakulev V (2010) Arkivoc 2010:275CrossRefGoogle Scholar
  2. 2.
    Ali R, Marella A, Alam T, Naz R, Akhter M, Shaquiquzzaman M, Saha R, Tanwar O, Alam M, Hooda J (2012) Indones J Pharm 23:193Google Scholar
  3. 3.
    Antonini I, Polucci P, Cola D, Palmieri G, Martelli S, Bontemps-Gracz M (1993) Farmaco 48:1641Google Scholar
  4. 4.
    Loskutov VA (2000) Russ J Org Chem 36:1478Google Scholar
  5. 5.
    Vaisburg AF, Etzlstorfer C, Falk H (1994) Monatsh Chem 125:1121CrossRefGoogle Scholar
  6. 6.
    Bulhakova NA (2002) Synthesis, structure and properties of some 9,10-anthraquinone derivatives containing a nitrogen–nitrogen bond. Ph.D. thesis, Krasnoyarsk State Pedagogical University named after V.P. Astafieva, Krasnoyarsk ([in Russian])Google Scholar
  7. 7.
    Vorob’eva SL, Buyanov VN, Levina II, Suvorov NN (1989) Chem Heterocycl Compd 25:58CrossRefGoogle Scholar
  8. 8.
    Kim MK, Wiemer DF (2004) Tetrahedron Lett 45:4977CrossRefGoogle Scholar
  9. 9.
    Stasevych MV, Zvarych VI, Lunin VV, Vovk MV, Novikov VP (2017) Russ J Org Chem 53:468CrossRefGoogle Scholar
  10. 10.
    Stasevych MV, Zvarych VI, Lunin VV, Khomyak SV, Vovk MV, Novikov VP (2017) Chem Heterocycl Compd 53:927CrossRefGoogle Scholar
  11. 11.
    Zvarych V, Stasevych M, Lunin V, Deniz NG, Sayil C, Ozyurek M, Guclu K, Vovk M, Novikov V (2016) Monatsh Chem 147:2093CrossRefGoogle Scholar
  12. 12.
    Butler RN, Quinn KF, Welke B (1992) J Chem Soc Chem Commun 1992:1481CrossRefGoogle Scholar
  13. 13.
    Allen FH, Groom CR, Liebeschuetz JW, Bardwell DA, Olsson TSG, Wood JPA (2012) Chem Inf Model 52:857CrossRefGoogle Scholar
  14. 14.
    Landge SM, Aprahamian I (2009) J Am Chem Soc 131:18269CrossRefGoogle Scholar
  15. 15.
    Su X, Aprahamian I (2011) Org Lett 13:30CrossRefGoogle Scholar
  16. 16.
    Landge SM, Tkatchouk E, Benítez D, Lanfranchi DA, Elhabiri M, Goddard WA, Aprahamian I (2011) J Am Chem Soc 133:9812CrossRefGoogle Scholar
  17. 17.
    He L, Lu L, Zhang S, Freeman HS (2010) Color Technol 126:92CrossRefGoogle Scholar
  18. 18.
    NCCLS (1990) Performance Standards for antimicrobial disk susceptibility tests, 4th edn: Approved standards. Document M2-A4, Villanova, PAGoogle Scholar
  19. 19.
    NCCLS (1998) Reference Method for broth dilution antifungal susceptibility testing of conidium forming filamentous fungi: proposed standard. Document M38-P, Wayne, PAGoogle Scholar
  20. 20.
    Apak R, Güçlü K, Özyürek M, Karademir SE (2004) J Agric Food Chem 52:7970CrossRefGoogle Scholar
  21. 21.
    Bekdeşer B, Özyürek M, Güçlü K, Alkan FÜ, Apak R (2014) Spectrochim Acta Part A 132:485CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Maryna Stasevych
    • 1
  • Viktor Zvarych
    • 1
  • Volodymyr Lunin
    • 1
  • Nazarii Kopak
    • 1
  • Olena Komarovska-Porokhnyavets
    • 1
  • Nahide Gulsah Deniz
    • 2
  • Cigdem Sayil
    • 2
  • Mustafa Ozyurek
    • 3
  • Kubilay Guclu
    • 3
  • Mykhailo Vovk
    • 4
  • Volodymyr Novikov
    • 1
  1. 1.Department of Technology of Biologically Active Substances, Pharmacy and BiotechnologyLviv Polytechnic National UniversityLvivUkraine
  2. 2.Division of Organic Chemistry, Department of Chemistry, Engineering FacultyIstanbul UniversityIstanbulTurkey
  3. 3.Division of Analytical Chemistry, Department of Chemistry, Engineering FacultyIstanbul UniversityIstanbulTurkey
  4. 4.Department of Mechanism of Organic ReactionsInstitute of Organic Chemistry of National Academy of Sciences of UkraineKievUkraine

Personalised recommendations