Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 6, pp 1101–1109 | Cite as

Salen complex of Cu(II) supported on superparamagnetic Fe3O4@SiO2 nanoparticles: an efficient and magnetically recoverable catalyst for N-arylation of imidazole with aryl halides

  • Ali Reza Sardarian
  • Neda Zohourian-Mashmoul
  • Mohsen Esmaeilpour
Original Paper


The Fe3O4@SiO2/Salen-Cu(II) nanocatalyst is reported as a thermally and air-stable, economical, and magnetically recoverable heterogeneous catalyst for the selective and efficient N-(hetero)arylation of imidazole. Only by adding a small amount of the catalyst (0.4 mol% Cu) to the reactants and heating under air, the new presented method provides a variety of functionalized and hindered N-(hetero)arylimidazoles in good to excellent yields within short reaction times. The catalyst could be easily recovered with the aid of a permanent magnet and reused up to five consecutive runs without significant loss of activity. Also, the leaching of Cu was negligible after the fifth recycle. Particularly, using either (hetero)aryl iodides or bromides as arylating agents and the need of only small amount of the magnetically recoverable heterogeneous copper-based nanocatalyst make this method low-cost, environmentally benign, and easy to use.

Graphical abstract


N-Arylation Aryl halides Heterogeneous catalysis Magnetic properties Nanostructures Salen-Cu(II) 



We would like to gratefully acknowledge financial support of this work by research council of Shiraz University.

Supplementary material

706_2018_2148_MOESM1_ESM.doc (5.2 mb)
Supplementary material 1 (DOC 5371 kb)


  1. 1.
    Grauer A, Späth A, Ma D, König B (2009) Chem Asian J 4:1134CrossRefGoogle Scholar
  2. 2.
    Güngör T, Fouquet A, Teulon JM, Provost D, Cazes M, Cloarec A (1992) J Med Chem 35:4455CrossRefGoogle Scholar
  3. 3.
    Herrmann WA (2002) Angew Chem Int Ed 41:1290CrossRefGoogle Scholar
  4. 4.
    Sircar I, Duell BL, Bobowski G, Bristol JA, Evans DB (1985) J Med Chem 28:1405CrossRefGoogle Scholar
  5. 5.
    Lo YS, Nolan JC, Maren TH, Welstead WJ Jr, Gripshover DF, Shamblee DA (1992) J Med Chem 35:4790CrossRefGoogle Scholar
  6. 6.
    Rani N, Sharma A, Singh R (2013) Mini Rev Med Chem 13:1812CrossRefGoogle Scholar
  7. 7.
    Heeres J, Backx LJJ, Mostmans JH, Cutsem JV (1979) J Med Chem 22:1003CrossRefGoogle Scholar
  8. 8.
    Al-Masoudi NA, Al-Soud YA, Kalogerakis A, Pannecouque C, De Clercq E (2006) Chem Biodivers 3:515CrossRefGoogle Scholar
  9. 9.
    Leeson PD, Springthorpe B (2007) Nat Rev Drug Discov 6:881CrossRefGoogle Scholar
  10. 10.
    Nyce GW, Glauser T, Connor EF, Möck A, Waymouth RM, Hedrick JL (2003) J Am Chem Soc 125:3046CrossRefGoogle Scholar
  11. 11.
    Harkal S, Rataboul F, Zapf A, Fuhrmann C, Riermeier T, Monsees A, Beller M (2004) Adv Synth Catal 346:1742CrossRefGoogle Scholar
  12. 12.
    Suárez-Pantiga S, Rubio E, Alvarez-Rúa C, González JM (2009) Org Lett 11:13CrossRefGoogle Scholar
  13. 13.
    Venuti MC, Stephenson RA, Alvarez R, Bruno JJ, Strosberg AM (1988) J Med Chem 31:2136CrossRefGoogle Scholar
  14. 14.
    Priyarega S, Raja DS, Babu SG, Karvembu R, Hashimoto T, Endo A, Natarajan K (2012) Polyhedron 34:143CrossRefGoogle Scholar
  15. 15.
    Kiyomori A, Marcoux JF, Buchwald SL (1999) Tetrahedron Lett 40:2657CrossRefGoogle Scholar
  16. 16.
    Wu CD, Li L, Shi LX (2009) Dalton Trans 2009:6790CrossRefGoogle Scholar
  17. 17.
    López-Alvarado P, Avendaño C, Menéndez JC (1995) J Org Chem 60:5678CrossRefGoogle Scholar
  18. 18.
    Kang SK, Lee SH, Lee D (2000) Synlett 2000:1022CrossRefGoogle Scholar
  19. 19.
    Fedorov AY, Finet JP (1999) Tetrahedron Lett 40:2747CrossRefGoogle Scholar
  20. 20.
    Farahat AA, Boykin DW (2014) Tetrahedron Lett 55:3049CrossRefGoogle Scholar
  21. 21.
    Kantam ML, Yadav J, Laha S, Sreedhar B, Jha S (2007) Adv Synth Catal 349:1938CrossRefGoogle Scholar
  22. 22.
    Yang Q, Wang Y, Yang L, Zhang M (2013) Tetrahedron 69:6230CrossRefGoogle Scholar
  23. 23.
    Xu ZL, Li HX, Ren ZG, Du WY, Xu WC, Lang JP (2011) Tetrahedron 67:5282CrossRefGoogle Scholar
  24. 24.
    Liu YS, Liu Y, Ma XW, Liu P, Xie JW, Dai B (2014) Chin Chem Lett 25:775CrossRefGoogle Scholar
  25. 25.
    Polshettiwar V, Luque R, Fihri A, Zhu H, Bouhrara M, Basset JM (2011) Chem Rev 111:3036CrossRefGoogle Scholar
  26. 26.
    Astruc D, Lu F, Aranzaes JR (2005) Angew Chem Int Ed 44:7852CrossRefGoogle Scholar
  27. 27.
    Rout L, Jammi S, Punniyamurthy T (2007) Org Lett 9:3397CrossRefGoogle Scholar
  28. 28.
    Safaei-Ghomi J, Zahedi S, Ghasemzadeh MA (2014) Monatsh Chem 145:1191CrossRefGoogle Scholar
  29. 29.
    Mohaqeq M, Safaei-Ghomi J (2015) Monatsh Chem 146:1581CrossRefGoogle Scholar
  30. 30.
    Alonso F, Riente P, Sirvent JA, Yus M (2010) Appl Catal A Gen 378:42CrossRefGoogle Scholar
  31. 31.
    Rostamizadeh S, Abdollahi F, Shadjou N, Amani AM (2013) Monatsh Chem 144:1191CrossRefGoogle Scholar
  32. 32.
    Gupta AK, Gupta M (2005) Biomaterials 26:3995CrossRefGoogle Scholar
  33. 33.
    Harrison RJ, Dunin-Borkowski RE, Putnis A (2002) Proc Natl Acad Sci USA 99:16556CrossRefGoogle Scholar
  34. 34.
    Wu W, He Q, Jiang C (2008) Nanoscale Res Lett 3:397CrossRefGoogle Scholar
  35. 35.
    Esmaeilpour M, Sardarian AR (2014) Green Chem Lett Rev 7:301CrossRefGoogle Scholar
  36. 36.
    Esmaeilpour M, Javidi J, Nowroozi-Dodeji F, Hassannezhad H (2014) J Iran Chem Soc 11:1703CrossRefGoogle Scholar
  37. 37.
    Esmaeilpour M, Javidi J (2015) J Chin Chem Soc 62:614CrossRefGoogle Scholar
  38. 38.
    Esmaeilpour M, Javidi J (2015) J Chin Chem Soc 62:328CrossRefGoogle Scholar
  39. 39.
    Esmaeilpour M, Javidi J, Zahmatkesh S (2016) Appl Organomet Chem 30:897CrossRefGoogle Scholar
  40. 40.
    Panda N, Jena AK, Mohapatra S, Rout SR (2011) Tetrahedron Lett 52:1924CrossRefGoogle Scholar
  41. 41.
    Nador F, Volpe MA, Alonso F, Radivoy G (2014) Tetrahedron 70:6082CrossRefGoogle Scholar
  42. 42.
    Sivakami R, Babu SG, Dhanuskodi S, Karvembu R (2015) RSC Adv 5:8571CrossRefGoogle Scholar
  43. 43.
    Liu Y, Zhang Q, Ma X, Liu P, Xie J, Dai B, Liu Z (2013) Int J Org Chem 3:185CrossRefGoogle Scholar
  44. 44.
    Dehghani F, Sardarian AR, Esmaeilpour M (2013) J Organomet Chem 743:87CrossRefGoogle Scholar
  45. 45.
    Cristau HJ, Cellier PP, Spindler JF, Taillefer M (2004) Chem Eur J 10:5607CrossRefGoogle Scholar
  46. 46.
    Emel’yanenko VN, Kaliner M, Strassner T, Verevkin SP (2017) Fluid Phase Equilib 433:40CrossRefGoogle Scholar
  47. 47.
    Lv X, Wang Z, Bao W (2006) Tetrahedron 62:4756CrossRefGoogle Scholar
  48. 48.
    Altman RA, Buchwald SL (2006) Org Lett 8:2779CrossRefGoogle Scholar
  49. 49.
    Yang K, Qiu Y, Li Z, Wang Z, Jiang S (2011) J Org Chem 76:3151CrossRefGoogle Scholar
  50. 50.
    Inamoto K, Nozawa K, Kadokawa J, Kondo Y (2012) Tetrahedron 68:7794CrossRefGoogle Scholar
  51. 51.
    Zhang H, Cai Q, Ma D (2005) J Org Chem 70:5164CrossRefGoogle Scholar
  52. 52.
    Xue F, Cai C, Sun H, Shen Q, Rui J (2008) Tetrahedron Lett 49:4386CrossRefGoogle Scholar
  53. 53.
    Joseph PJA, Priyadarshini S, Kantam ML, Maheswaran H (2011) Catal Sci Technol 1:234CrossRefGoogle Scholar
  54. 54.
    Hosseini-Sarvari M, Moeini F (2014) RSC Adv 4:7321CrossRefGoogle Scholar
  55. 55.
    Esmaeilpour M, Sardarian AR, Jarrahpour A, Ebrahimi E, Javidi J (2016) RSC Adv 6:43376CrossRefGoogle Scholar
  56. 56.
    Deng Y, Qi D, Deng C, Zhang X, Zhao D (2008) J Am Chem Soc 130:28CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Ali Reza Sardarian
    • 1
  • Neda Zohourian-Mashmoul
    • 1
  • Mohsen Esmaeilpour
    • 1
  1. 1.Chemistry Department, College of SciencesShiraz UniversityShirazIran

Personalised recommendations