Skip to main content
Log in

Synthesis and antiradical activity of novel copper(II) complexes of long chain reduced Schiff base ligands

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Oxidative stress is the cause of many diseases and at the heart of it is the overproduction of reactive oxygen species (ROS). There are several protective enzymes, e.g., superoxide dismutases (SOD), able to decrease the level of ROS in the cell; however, a therapeutic use of these enzymes is problematic. Small molecule compounds and complexes able to scavenge free radicals such as superoxide anion radicals could be used instead. These compounds are often called SOD-mimics and various researches are interested in synthesis and study of these compounds. In our study, a series of Cu(II) complexes were synthesized, containing reduced Schiff base ligands prepared from salicylaldehyde and amino acids with longer chain length (5-aminopentanoic acid, 6-aminohexanoic acid, 8-aminooctanoic acid, 11-aminoundecanoic acid, and 12-aminododecanoic acid). Complexes prepared from these ligands are novel and were prepared using three different methods. An assay based on the ability to inhibit reduction of iodonitrotetrazolium dye by superoxide anion radicals was used to determine antiradical activity of the prepared complex. Most of the prepared complexes proved to be good antiradical agents compared to cystamine and the copper(II) complex with Schiff base type ligand N-salicylidene-β-alanine. The best IC50 values of the radical transfer of the prepared compounds were two complexes of N-(2-hydroxybenzyl)-11-aminoundecanoic acid: 97.0 ± 1.9 and 45.1 ± 0.5 μM.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. González EA, Nazareno MA (2011) LWT Food Sci Technol 44:558

    Article  Google Scholar 

  2. Heimler D, Isolani L, Vignolini P, Romani A (2009) Food Chem 114:765

    Article  CAS  Google Scholar 

  3. Mancebo-Campos V, Desamparados Salvador M, Fregapane G (2014) Food Chem 150:374

    Article  CAS  Google Scholar 

  4. Ravishankar D, Rajora AK, Greco F, Osborn HMI (2013) Int J Biochem Cell B 45:2821

    Article  CAS  Google Scholar 

  5. Kostyuk VA, Potapovich AI, Strigunova EN, Kostyuk TV, Afanas’ev IB (2004) Arch Biochem Biophys 428:204

    Article  CAS  Google Scholar 

  6. Vančo J, Marek J, Trávníček Z, Račanská E, Muselík J, Švajlenová O (2008) J Inorg Biochem 102:595

    Article  Google Scholar 

  7. Nikolić MV, Mijajlović MŽ, Jevtić VV, Ratković ZR, Novaković SB, Bogdanović GA, Milovanović J, Arsenijević A, Stojanović B, Trifunović SR, Radić GP (2016) J Mol Struct 1116:264

    Article  Google Scholar 

  8. Vančo J, Švajlenová O, Račanská E, Muselík J, Valentová J (2004) J Trace Elem Med Biol 18:155

    Article  Google Scholar 

  9. Hoonur RS, Patil BR, Badiger DS, Vadavi RS, Gudasi KB, Dandawate PR, Ghaisas MM, Padhye SB, Nethaji M (2010) Eur J Med Chem 45:2277

    Article  CAS  Google Scholar 

  10. Sies H (1997) Exp Physiol 82:291

    Article  CAS  Google Scholar 

  11. Ghoneim I, Abdel-Naim AB, Khalifa AE, El-Denshary ES (2002) Pharmacol Res 46:273

    Article  CAS  Google Scholar 

  12. Tozokumi S (1996) Free Radic Biol Med 34:93

    Google Scholar 

  13. Noguchi S (2002) Free Radic Biol Med 1588:159

    Google Scholar 

  14. Halliwell B (1992) J Lab Clin Med 119:598

    CAS  Google Scholar 

  15. Yang CT, Vetrichelvan M, Yang X, Moubaraki B, Murray KS, Vittal JJ (2004) Dalton Trans 2004:113

    Article  Google Scholar 

  16. Tavadyan LA, Tonikyan HG, Minasyan SH, Harutyunyan LA, Greenaway FT, Williams S, Gray-Kaufman RA, Sorenson JRJ (2002) Inorg Chim Acta 328:1

    Article  CAS  Google Scholar 

  17. Islas MS, Rojo T, Lezama L, Merino MG, Cortes MA, Puyol MR, Ferrer EG, Williams PAM (2013) J Inorg Biochem 123:23

    Article  CAS  Google Scholar 

  18. Klanicová A, Trávníček Z, Vančo J, Popa I, Šindelář Z (2010) Polyhedron 29:2582

    Article  Google Scholar 

  19. Kaştaş CA, Kaştaş G, Güder A, Gür M, Muğlu H, Büyükgüngör O (2017) J Mol Struct 1130:623

    Article  Google Scholar 

  20. Ilkevycha NS, Schroeder G, Rybachenkoa VI, Chotiya KY, Makarova RA (2012) Spectrochim Acta A 86:821

    Google Scholar 

  21. Wajda-Hermanowicz K, Pieniążczak D, Wróbel R, Zatajska A, Ciunik Z, Berski S (2016) J Mol Struct 1114:108

    Article  CAS  Google Scholar 

  22. Afanas’ ev IB, Ostrakhovitch EA, Mikhal’chik EV, Ibragimova GA, Korkina LG (2001) Biochem Pharmacol 61:677

    Article  Google Scholar 

  23. Ali HM, Almagribi W, Al-Rashidi MN (2016) Food Chem 194:1275

    Article  CAS  Google Scholar 

  24. Schaich KM, Tian X, Xie J (2015) J Funct Food 18:782

    Article  Google Scholar 

  25. Mishra P, Dixit A, Ray M, Sabat SC (2014) Biochimie 97:181

    Article  CAS  Google Scholar 

  26. Dimayuga FO, Wang C, Clark JM, Dimayuga ER, Dimayuga VM, Bruce-Keller AJ (2007) J Neuroimmunol 182:89

    Article  CAS  Google Scholar 

  27. Ünver Y, Sancak KK, Çelik F, Birinci E, Küçük M, Soylu S, Burnaz NA (2014) Eur J Med Chem 84:639

    Article  Google Scholar 

  28. Selvaganapathy M, Pravin N, Pothiraj K, Raman N (2014) J Photochem Photobiol B 138:256

    Article  CAS  Google Scholar 

  29. Demir S, Güder A, Yazıcılar TK, Cağlar S, Büyükgüngör O (2015) Spectrochim Acta A 150:821

    Article  CAS  Google Scholar 

  30. Pontiki E, Hadjipavlou-Litina D, Chaviara AT, Bolos CA (2006) Bioorg Med Chem Lett 16:2234

    Article  CAS  Google Scholar 

  31. Abdel-Rahman LH, Abu-Dief AM, Ismael M, Mohamed MAA, Hashem NA (2016) J Mol Struct 1103:232

    Article  CAS  Google Scholar 

  32. Vančo J, Trávniček Z, Marek J, Herchel R (2010) Inorg Chim Acta 363:3887

    Article  Google Scholar 

  33. García-Raso A, Fiol JJ, López-Zafra A, Castro JA, Cabrero A, Mata I, Molins E (2003) Polyhedron 22:403

    Article  Google Scholar 

  34. Abdel-Rahman LH, El-Khatib RM, Nassr LAE, Abu-Dief AM, Ismael M, Seleem AA (2014) Spectrochim Acta A 117:366

    Article  CAS  Google Scholar 

  35. Mondal S, Pakhira B, Blake AJ, Drew MGB, Chattopadhyay SK (2016) Polyhedron 117:327

    Article  CAS  Google Scholar 

  36. Yousuf I, Arjmand F (2016) J Photochem Photobiol B 164:83

    Article  CAS  Google Scholar 

  37. Sreenivasulu B (2009) Aust J Chem 62:968

    Article  CAS  Google Scholar 

  38. Jia L, Jiang P, Xu J, Hao Z, Xu X, Chen L, Wu J, Tang N, Wang Q, Vittal JJ (2010) Inorg Chim Acta 363:855

    Article  CAS  Google Scholar 

  39. Lurie EY, Kaplun AP, Kulakov VN, Shvets VI (1995) Russ J Bioorg Chem 21:264

    Google Scholar 

  40. Puterová Z, Valentová J, Bojková Z, Kožíšek J, Devínsky F (2011) Dalton Trans 40:1484

    Article  Google Scholar 

  41. Lintnerová L, Valentová J, Devínsky F (2016) Stud UBB Chem 61:85

    Google Scholar 

  42. Dekker FJ, Ghizzoni M, van der Meer N, Wisastra R, Haisma HJ (2009) Bioorg Med Chem 17:460

    Article  CAS  Google Scholar 

  43. Kudryashova V, Dikovskaya KI, Kalnins A, Kropivets LS, Freimanis J, Sakhartova OV, Turovskii IV (1988) Bioorg Khim 14:216

    CAS  Google Scholar 

  44. Gros L, Lorente SO, Jimenez Jimenez C, Yardley V, Rattray L, Wharton H, Little S, Croft SL, Ruiz-Perez LM (2006) J Med Chem 49:6094

    Article  CAS  Google Scholar 

  45. Spiccia DN, Border E, Illesinghe J, Jackson WR, Robinson AJ (2013) Synthesis 45:1683

    Article  CAS  Google Scholar 

  46. Jakobsen CM, Denmeade SR, Isaacs JT, Gady A, Olsen CE, Christensen SB (2001) J Med Chem 44:4696

    Article  CAS  Google Scholar 

  47. CrysAlisPro (2017) XRD products, version 171.38.43. Yarnton, Oxfordshire, United Kingdom

  48. Palatinus L (2013) Acta Crystallogr B 69:1

    Article  CAS  Google Scholar 

  49. Dolomanov H, Bouhris OV, Gildea LJ, Howard RJ, Puschmann JAK (2009) J Appl Crystallogr 42:339

    Article  CAS  Google Scholar 

  50. Sheldrick GM (2015) Acta Crystallogr C 71:3

    Article  Google Scholar 

  51. Bergerhoff G, Berndt M, Brandenburg K (1996) J Res Natl Inst Stand Technol 101:221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under Contract no. APVV-0516-12 and no. APVV-15-0079 and Scientific Grant Agency of the Slovak Republic VEGA (Project no. 1/0871/16 and 1/0346/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Lintnerová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 792 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lintnerová, L., Valentová, J., Herich, P. et al. Synthesis and antiradical activity of novel copper(II) complexes of long chain reduced Schiff base ligands. Monatsh Chem 149, 901–911 (2018). https://doi.org/10.1007/s00706-017-2137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2137-z

Keywords

Navigation