Advertisement

Monatshefte für Chemie - Chemical Monthly

, Volume 149, Issue 6, pp 1031–1044 | Cite as

An extension of the Fries rule to non-benzenoid hydrocarbons having four-atomic rings

Original Paper
  • 40 Downloads

Abstract

The study contains a deductive search for the principal monocyclic substructures determining different importances (weights) of separate Kekulè valence structures of phenylenes and their congeners. Individual Kekulè structures are modelled as continuous conjugated systems consisting of uniform double (C=C) bonds connected by uniform single (C–C) bonds, the latter being substantially weaker as compared to the former. The relevant total \(\pi\)-electron energies are shown to offer an adequate criterion for ordering of the structures concerned according to their weights. These energies, in turn, are derived in the form of power series with respect to the small resonance parameter of C–C bonds. Analysis of expressions for separate members of this series shows that the cyclobutadienoid rings (if any) are the most important destabilizing contributors to the energy of the given structure, whereas the benzenoid rings and cycles like 3,4-dimethylene cyclobutene take the second place (their increments are stabilizing and destabilizing, respectively). Additivity and transferability of the above-enumerated contributions to energies of Kekulè valence structures also are among the conclusions. These results provide us with an extension of the classical Fries rule to non-benzenoid hydrocarbons having four-atomic rings. Specific examples of the given class of compounds are considered in a detail, viz. biphenylene, [3]phenylene, as well as benzo- and naphthocyclobutenes. The relation of the approach applied to the theory of conjugated circuits also is discussed.

Graphical abstract

Keywords

Arenes Electronic structure Fries rule Hydrocarbons Kekulè valence structure 

Notes

Acknowledgements

The author is grateful to his colleague Dr. Vaidas Juknevičius for his help with preparation of the figures of this paper.

References

  1. 1.
    Cyvin SJ, Gutman I (1988) Kekulè structures of benzenoid hydrocarbons. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Randić M, Plavsić D, Trinajstić N (1991) Struct Chem 2:543CrossRefGoogle Scholar
  3. 3.
    Randić M (2003) Chem Rev 103:3449CrossRefGoogle Scholar
  4. 4.
    Herndon WC (1974) J Chem Educ 51:10CrossRefGoogle Scholar
  5. 5.
    Cooper D (2002) Valence bond theory. Elsevier, AmsterdamGoogle Scholar
  6. 6.
    Klein DJ, Trinajstić N (1990) Valence bond theory and chemical structure. Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Rogers KM, Fowler PW (2001) J Chem Soc Perkin Trans 2:18CrossRefGoogle Scholar
  8. 8.
    Ciesielski A, Krygowski TM, Cyranski MK (2010) Symmetry 2:1390CrossRefGoogle Scholar
  9. 9.
    Randić M (2004) J Chem Inf Comput Sci 44:365CrossRefGoogle Scholar
  10. 10.
    Fries K (1927) J Liebig Ann Chem 454:121CrossRefGoogle Scholar
  11. 11.
    Fries K, Walter R, Schilling K (1935) J Liebig Ann Chem 516:248CrossRefGoogle Scholar
  12. 12.
    Randić M (1961) J Chem Phys 34:693CrossRefGoogle Scholar
  13. 13.
    Heiberg-Andersen H, Skjeltorp AT (2005) J Math Chem 38:589CrossRefGoogle Scholar
  14. 14.
    Sedlar J, Andelić I, Gutman I, Vukičević D, Graovać A (2006) Chem Phys Lett 427:418CrossRefGoogle Scholar
  15. 15.
    Dewar MJS, Longuet-Higgins HC (1952) Proc Roy Soc A 214:428CrossRefGoogle Scholar
  16. 16.
    Trinajstić N (1977) In: Segal GA (ed) Semiempirical methods of electronic structure calculations, Part A, Techniques. Plenum Press, New YorkGoogle Scholar
  17. 17.
    Klein DJ, Randić M (1987) J Comput Chem 8:516CrossRefGoogle Scholar
  18. 18.
    Graovać A, Gutman I, Randić M, Trinajstić N (1973) J Am Chem Soc 95:6267CrossRefGoogle Scholar
  19. 19.
    Graovać A, Gutman I, Randić M, Trinajstić N (1978) Coll Czech Chem Commun 43:1375CrossRefGoogle Scholar
  20. 20.
    El-Basil (1982) Int J Quant Chem 21:771CrossRefGoogle Scholar
  21. 21.
    El-Basil (1982) Int J Quant Chem 21:779CrossRefGoogle Scholar
  22. 22.
    El-Basil (1982) Int J Quant Chem 21:793CrossRefGoogle Scholar
  23. 23.
    Havenith RWA, Van Lenthe JH, Dijkstra F, Jenneskens LW (2001) J Phys Chem A 105:3838CrossRefGoogle Scholar
  24. 24.
    Krygowski TM, Anulewicz R, Kruszewski J (1983) Acta Crystallogr Sect B Struct Sci 39:732CrossRefGoogle Scholar
  25. 25.
    Krygowski TM, Cyranski M (1997) In: Hargittai M, Hargittai I (eds) Advances in molecular structure research. JAI Press, LondonGoogle Scholar
  26. 26.
    Ciesielski A, Krygowski TM, Cyranski M, Balaban A (2011) Phys Chem Chem Phys 13:3737CrossRefGoogle Scholar
  27. 27.
    Clar E (1972) The aromatic sextet. Wiley & Sons, LondonGoogle Scholar
  28. 28.
    Sola M (2013) Forty years of Clar’s aromatic π-sextet rule. Front Chem.  https://doi.org/10.3389/fchem.2013.00022 Google Scholar
  29. 29.
    Klein DJ, Trinajstić N (1989) Pure Appl Chem 61:2107CrossRefGoogle Scholar
  30. 30.
    Klein DJ (1990) J Chem Educ 67:633CrossRefGoogle Scholar
  31. 31.
    Gineityte V (2014) MATCH Commun Math Comput Chem 72:39Google Scholar
  32. 32.
    Gineityte V (2002) J Mol Struct (Theochem) 585:15CrossRefGoogle Scholar
  33. 33.
    Gineityte V (2013) Int J Chem Model 5:99Google Scholar
  34. 34.
    Gineityte V (2016) Monatsh Chem 147:1303CrossRefGoogle Scholar
  35. 35.
    Malrieu JP, Gicquel M, Fowler PW, Lepetit C, Heully JL, Chauvin R (2008) J Phys Chem A 112:13203CrossRefGoogle Scholar
  36. 36.
    Vollhardt KPC, Mohler DL (1996) In: Halton B (ed) Advances in strain in organic chemistry, vol 5. JAI Press, LondonGoogle Scholar
  37. 37.
    Balaban AT, Vollhardt KPC (2011) Open Org Chem J 5(Suppl 1-M8):117CrossRefGoogle Scholar
  38. 38.
    Schulman JM, Disch RL (1993) J Am Chem Soc 115:11153CrossRefGoogle Scholar
  39. 39.
    Cava MP, Shirley RL, Erickson BW (1962) J Org Chem 27:755CrossRefGoogle Scholar
  40. 40.
    Crawford JL, Marshi RE (1973) Acta Crystallogr B 29:1238CrossRefGoogle Scholar
  41. 41.
    Cava MP, Deana AA, Muth K (1960) J Am Chem Soc 82:2524CrossRefGoogle Scholar
  42. 42.
    Lawrence JL, MacDonald SGG (1969) Acta Crystallogr B 25:978CrossRefGoogle Scholar
  43. 43.
    Gutman I, Ashrafi AR (2008) MATCH Commun Math Comput Chem 60:135Google Scholar
  44. 44.
    Furtula B, Gutman I (2008) Indian J Chem 47A:220Google Scholar
  45. 45.
    Coulson CA, O’Leary B, Mallion RB (1978) Hűckel theory for organic chemists. Academic Press, LondonGoogle Scholar
  46. 46.
    Yates K (1978) Hűckel molecular orbital theory. Academic Press, New YorkGoogle Scholar
  47. 47.
    Gutman I (2005) Monatsh Chem 136:1055CrossRefGoogle Scholar
  48. 48.
    Fishtik I (2011) J Phys Org Chem 24:263CrossRefGoogle Scholar
  49. 49.
    Mitchell RH, Iyer VS (1996) J Am Chem Soc 118:2903CrossRefGoogle Scholar
  50. 50.
    Randić M (2011) Open Org Chem J 5(Suppl 1-M2):11CrossRefGoogle Scholar
  51. 51.
    Randić M, Balaban AT, Plavsić D (2011) Phys Chem Chem Phys 13:20644CrossRefGoogle Scholar
  52. 52.
    Gineityte V (1999) J Mol Struct (Theochem) 487:231CrossRefGoogle Scholar
  53. 53.
    Gineityte V (2009) Z Naturforsch A 64:132CrossRefGoogle Scholar
  54. 54.
    Gineityte V (2012) Int J Chem Model 4:189Google Scholar
  55. 55.
    Gineityte V (2008) Int J Quant Chem 108:1141CrossRefGoogle Scholar
  56. 56.
    Gineityte V (2016) ArXiv:1602.07904 http://arxiv.org/abs/1602.07904

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Theoretical Physics and AstronomyVilnius UniversityVilniusLithuania

Personalised recommendations