Skip to main content

Advertisement

Log in

Identification of the optimal insertion site for expression of a foreign gene in an infectious hematopoietic necrosis virus vector

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Infectious hematopoietic necrosis virus (IHNV) was developed as a vector to aid the construction of vaccines against viral diseases such as viral hemorrhagic septicemia virus, spring viremia of carp virus, and influenza virus H1N1. However, the optimal site for foreign gene expression in the IHNV vector has not been determined. In the present study, five recombinant viruses with the green fluorescence protein (GFP) gene inserted into different genomic junction regions of the IHNV genomic sequence were generated using reverse genetics technology. Viral growth was severely delayed when the GFP gene was inserted into the intergenic region between the N and P genes. Real-time fluorescence quantitative PCR assays showed that the closer the GFP gene was inserted towards the 3ʹ end, the higher the GFP mRNA levels. Measurement of the GFP fluorescence intensity, which is the most direct method to determine the GFP protein expression level, showed that the highest GFP protein level was obtained when the gene was inserted into the intergenic region between the P and M genes. The results of this study suggest that the P and M gene junction region is the optimal site within the IHNV vector to express foreign genes, providing valuable information for the future development of live vector vaccines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kurath G, Ahern KG, Pearson GD, Leong JC (1985) Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R-loop mapping. J Virol 53:469–476 (PubMed: 3838192)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Morzunov SP, Winton JR, Nichol ST (1995) The complete genome structure and phylogenetic relationship of infectious hematopoietic necrosis virus. Virus Res 38:175–192 (PubMed: 8578857)

    Article  CAS  PubMed  Google Scholar 

  3. Kim KI, Cha SJ, Lee C, Baek H, Hwang SD, Cho MY, Jee BY, Park MA (2016) Genetic relatedness of infectious hematopoietic necrosis virus (IHNV) from cultured salmonids in Korea. Arch Virol 161:2305–2310 (PubMed: 27255747)

    Article  CAS  PubMed  Google Scholar 

  4. Ammayappan A, LaPatra SE, Vakharia VN (2010) Molecular characterization of the virulent infectious hematopoietic necrosis virus (IHNV) strain 220-90. Virol J 7:10 (PubMed: 20085652)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adel M, Amiri AB, Dadar M, Breyta R, Kurath G, Laktarashi B, Ghajari A (2016) Phylogenetic relationships of Iranian infectious hematopoietic necrosis virus of rainbow trout (Oncorhynchus mykiss) based on the glycoprotein gene. Arch Virol 161:657–663 (PubMed: 26602428)

    Article  CAS  PubMed  Google Scholar 

  6. Purcell MK, Marjara IS, Batts W, Kurath G, Hansen JD (2011) Transcriptome analysis of rainbow trout infected with high and low virulence strains of infectious hematopoietic necrosis virus. Fish Shellfish Immunol 30:84–93 (PubMed: 20883797)

    Article  CAS  PubMed  Google Scholar 

  7. Enzmann PJ, Kurath G, Fichtner D, Bergmann SM (2005) Infectious hematopoietic necrosis virus: monophyletic origin of European isolates from North American genogroup M. Dis Aquat Organ 66:187–195 (PubMed: 16261933)

    Article  CAS  PubMed  Google Scholar 

  8. Breyta R, Jones A, Stewart B, Brunson R, Thomas J, Kerwin J, Bertolini J, Mumford S, Patterson C, Kurath G (2013) Emergence of MD type infectious hematopoietic necrosis virus in Washington State coastal steelhead trout. Dis Aquat Organ 104:179–195 (PubMed: 23759556)

    Article  PubMed  Google Scholar 

  9. Alonso M, Leong JC (2013) Licensed DNA vaccines against infectious hematopoietic necrosis virus (IHNV). Recent Pat DNA Gene Seq 7:62–65 (PubMed: 22670604)

    Article  CAS  PubMed  Google Scholar 

  10. Ristow SS, LaPatra SE, Dixon R, Pedrow CR, Shewmaker WD, Park JW, Thorgaard GH (2000) Responses of cloned rainbow trout Oncorhynchus mykiss to an attenuated strain of infectious hematopoietic necrosis virus. Dis Aquat Organ 42:163–172 (PubMed: 11104067)

    Article  CAS  PubMed  Google Scholar 

  11. Larragoite ET, Tacchi L, LaPatra SE, Salinas I (2016) An attenuated virus vaccine appears safe to the central nervous system of rainbow trout (Oncorhynchus mykiss) after intranasal delivery. Fish Shellfish Immunol 49:351–354 (PubMed: 26772477)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Romero A, Figueras A, Thoulouze MI, Bremont M, Novoa B (2008) Recombinant infectious hematopoietic necrosis viruses induce protection for rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 80:123–135 (PubMed: 18717065)

    Article  PubMed  Google Scholar 

  13. Rouxel RN, Tafalla C, Merour E, Leal E, Biacchesi S, Bremont M (2016) Attenuated infectious hematopoietic necrosis virus with rearranged gene order as potential vaccine. J Virol 90:10857–10866 (PubMed: 27681130)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Emmenegger EJ, Biacchesi S, Mérour E, Glenn JA, Palmer AD, Brémont M, Kurath G (2018) Virulence of a chimeric recombinant infectious haematopoietic necrosis virus expressing the spring viraemia of carp virus glycoprotein in salmonid and cyprinid fish. J Fish Dis 41:67–78 (PubMed: 28799647)

    Article  CAS  PubMed  Google Scholar 

  15. Romero A, Figueras A, Tafalla C, Thoulouze MI, Bremont M, Novoa B (2005) Histological, serological and virulence studies on rainbow trout experimentally infected with recombinant infectious hematopoietic necrosis viruses. Dis Aquat Organ 68:17–28 (PubMed: 16465830)

    Article  PubMed  Google Scholar 

  16. Rouxel RN, Mérour E, Biacchesi S, Brémont M (2016) Complete protection against influenza virus H1N1 strain A/PR/8/34 challenge in mice immunized with non-adjuvanted Novirhabdovirus vaccines. Plos One 11:e0164245 (PubMed: 27711176)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhao W, Spatz S, Zhang Z, Wen G, Garcia M, Zsak L, Yu Q (2014) Newcastle disease virus (NDV) recombinants expressing infectious laryngotracheitis virus (ILTV) glycoproteins gB and gD protect chickens against ILTV and NDV challenges. J Virol 88:8397–8406 (PubMed: 24829337)l

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao JZ, Xu LM, Zhang ZY, Liu M, Cao YS, Yin JS, Liu HB, Lu TY (2019) Recovery of recombinant infectious hematopoietic necrosis virus strain Sn1203 using the mammalian cell line BHK-21. J Virol Methods 265:84–90 (PubMed:30615899)

    Article  CAS  PubMed  Google Scholar 

  19. Zhao JZ, Xu LM, Liu M, Zhang ZY, Yin JS, Liu HB, Lu TY (2017) Autophagy induced by infectious hematopoietic necrosis virus inhibits intracellular viral replication and extracellular viral yields in epithelioma papulosum cyprini cell line. Dev Comp Immunol 77:88–94 (PubMed: 28760360)

    Article  CAS  PubMed  Google Scholar 

  20. Zhao JZ, Xu LM, Liu M, Cao YS, LaPatra SE, Yin JS, Lu TY (2017) Preliminary study of an oral vaccine against infectious hematopoietic necrosis virus using improved yeast surface display technology. Mol Immunol 85:196–204 (PubMed: 28285182)

    Article  CAS  PubMed  Google Scholar 

  21. Novoa B, Romero A, Mulero V, Rodríguez I, Fernández I, Figueras A (2006) Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 24:5806–5816 (PubMed: 16777275)

    Article  CAS  PubMed  Google Scholar 

  22. Nzonza A, Lecollinet S, Chat S, Lowenski S, Merour E, Biacchesi S, Bremont M (2014) A recombinant Novirhabdovirus presenting at the surface the E glycoprotein from West Nile Virus (WNV) is immunogenic and provides partial protection against lethal WNV challenge in BALB/c mice. Plos One 9:e91766 (PubMed: 24663075)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z, Zhao W, Li D, Yang J, Zsak L, Yu Q (2015) Development of a Newcastle disease virus vector expressing a foreign gene through an internal ribosomal entry site provides direct proof for a sequential transcription mechanism. J Gen Virol 96:2028–2035 (PubMed: 25872740)

    Article  CAS  PubMed  Google Scholar 

  24. Carnero E, Li W, Borderia AV, Moltedo B, Moran T, Garcia-Sastre A (2009) Optimization of human immunodeficiency virus gag expression by newcastle disease virus vectors for the induction of potent immune responses. J Virol 83:584–597 (PubMed: 19004953)

    Article  CAS  PubMed  Google Scholar 

  25. Wertz GW, Moudy R, Ball LA (2002) Adding genes to the RNA genome of vesicular stomatitis virus: positional effects on stability of expression. J Virol 76:7642–7650 (PubMed: 12097578)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Central Public-Interest Scientific Institution Basal Research Fund, CAFS (grant number HSY201804M and 2019ZD0704), the Natural Science Foundation of Heilongjiang Province (grant number QC2018039), the National Natural Science Foundation of China Grant (grant number 31802344), and the Heilongjiang Postdoctoral Program (LBH-Z18275).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tong-Yan Lu or Zhen-Yu Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest related to this work.

Additional information

Handling Editor: Chan-Shing Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1905 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, JZ., Xu, LM., Liu, M. et al. Identification of the optimal insertion site for expression of a foreign gene in an infectious hematopoietic necrosis virus vector. Arch Virol 164, 2505–2513 (2019). https://doi.org/10.1007/s00705-019-04366-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04366-y

Navigation