Skip to main content
Log in

Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot of crucifers. Here, we report a virus that infects Xcc isolated from brassica fields in Brazil. Morphological, molecular and phylogenetic analysis indicated that the isolated virus is a new member of the genus Pbunavirus, family Myoviridae, and we propose the name “Xanthomonas virus XC 2” for this virus. The isolated virus has a narrow host range, infecting only Xcc isolates, and it did not infect unrelated bacteria. These results indicate that the isolated bacteriophage is highly specific for Xcc and may be a potential agent for biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to brassica crops. Mol Plant Pathol 14:2–18. https://doi.org/10.1111/j.1364-3703.2012.00833.x

    Article  CAS  PubMed  Google Scholar 

  2. Debarbieux L, Leduc D, Maura D et al (2010) Bacteriophages Can Treat and Prevent Pseudomonas aeruginosa Lung Infections. J Infect Dis 201:1096–1104. https://doi.org/10.1086/651135

    Article  CAS  PubMed  Google Scholar 

  3. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins—application approaches. Curr Med Chem 22:1757–1773. https://doi.org/10.2174/0929867322666150209152851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hung CH, Wu HC, Tseng YH (2002) Mutation in the Xanthomonas campestris xanA gene required for synthesis of xanthan and lipopolysaccharide drastically reduces the efficiency of bacteriophage ΦL7 adsorption. Biochem Biophys Res Commun 291:338–343. https://doi.org/10.1006/bbrc.2002.6440

    Article  CAS  PubMed  Google Scholar 

  5. Balogh B, Jones JB, Iriarte FB, Momol MT (2010) Phage therapy for plant disease control. Curr Pharm Biotechnol 11:48–57. https://doi.org/10.2174/138920110790725302

    Article  CAS  PubMed  Google Scholar 

  6. Park YJ, Lee BM, Ho-Hahn J et al (2004) Sensitive and specific detection of Xanthomonas campestris pv. campestris by PCR using species-specific primers based on hrpF gene sequences. Microbiol Res 159:419–423. https://doi.org/10.1016/j.micres.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  7. Xavier AS, Silva FP, Vidigal PMP et al (2018) Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria. Arch Virol 163:3275–3290. https://doi.org/10.1007/s00705-018-4006-4

    Article  CAS  Google Scholar 

  8. Chibani-Chennoufi S, Dillmann ML, Marvin-Guy L et al (2004) Lactobacillus plantarum bacteriophage LP65: a new member of the SPO1-like genus of the family myoviridae. J Bacteriol 186:7069–7083. https://doi.org/10.1128/JB.186.21.7069-7083.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sambrook J, Russell DW, Russell W (2001) Molecular cloning a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  10. Ackermann HW, Prangishvili D (2012) Prokaryote viruses studied by electron microscopy. Arch Virol 157:1843–1849. https://doi.org/10.1007/s00705-012-1383-y

    Article  CAS  PubMed  Google Scholar 

  11. Muhire BM, Varsani A, Martin DP (2014) SDT: A virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 9:e108277. https://doi.org/10.1371/journal.pone.0108277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hyatt D, Chen G-L, Locascio PF et al (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf 11:119. https://doi.org/10.1186/1471-2105-11-119

    Article  CAS  Google Scholar 

  13. Besemer J, Lomsadze A, Borodovsky M (2001) Nucl. Acids Res.-2001-Besemer-2607-18. 29:1–12. https://doi.org/10.1093/nar/29.12.2607

  14. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  15. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucleic Acids Res 39:W29–W37. https://doi.org/10.1093/nar/gkr367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. de Jong A, Pietersma H, Cordes M et al (2012) PePPER: a webserver for prediction of prokaryote promoter elements and regulons. BMC Genom. https://doi.org/10.1186/1471-2164-13-299

    Article  Google Scholar 

  17. Gautheret D, Lambert A (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J Mol Biol 313:1003–1011. https://doi.org/10.1006/jmbi.2001.5102

    Article  CAS  PubMed  Google Scholar 

  18. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689. https://doi.org/10.1093/nar/gki366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Danis-Wlodarczyk K, Olszak T, Arabski M et al (2015) Characterization of the newly isolated lytic bacteriophages KTN6 and KT28 and their efficacy against Pseudomonas aeruginosa biofilm. PLoS One 10:1–20. https://doi.org/10.1371/journal.pone.0127603

    Article  CAS  Google Scholar 

  20. Ceyssens PJ, Lavigne R, Mattheus W et al (2006) Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the φKMV subgroup within the T7 supergroup. J Bacteriol 188:6924–6931. https://doi.org/10.1128/JB.00831-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ceyssens PJ, Miroshnikov K, Mattheus W et al (2009) Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ Microbiol 11:2874–2883. https://doi.org/10.1111/j.1462-2920.2009.02030.x

    Article  CAS  PubMed  Google Scholar 

  22. Lavigne R, Darius P, Summer EJ et al (2009) Classification of Myoviridae bacteriophages using protein sequence similarity. BMC Microbiol 9:224. https://doi.org/10.1186/1471-2180-9-224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gallet R, Kannoly S, Wang I-N (2011) Effects of bacteriophage traits on plaque formation. BMC Microbiol 11:181. https://doi.org/10.1186/1471-2180-11-181

    Article  PubMed  PubMed Central  Google Scholar 

  24. Heller KJ (1992) Molecular interaction between bacteriophage and the gram-negative cell envelope. Arch. Microbiol. 158:235–248

    Article  CAS  PubMed  Google Scholar 

  25. Garbe J, Wesche A, Bunk B et al (2010) Characterization of JG024, a Pseudomonas aeruginosa PB1-like broad host range phage under simulated infection conditions. BMC Microbiol 10:301. https://doi.org/10.1186/1471-2180-10-301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Karla Ribeiro and Gilmar Valente (Núcleo de Microscopia e Microanálise, CCB/UFV) for assistance with TEM analysis, and Wagner Gonzaga Gonçalves and José Eduardo Serrão (Dep de Biologia Geral, UFV) for assistance in sample preparation. We also thank Rosa de Lima Ramos Mariano (Dep. de Agronomia, UFRPE), Elineide Barbosa de Souza (Dep. de Biologia, UFRPE), Acelino Couto Alfenas and José Rogério de Oliveira (Dep. de Fitopatologia, UFV) for kindly providing the bacterial isolates used in this work, and Marisa Vieira Queiroz (Dep. de Microbiologia) for providing pulse field material and equipment. FPS was the recipient of a CNPq graduate fellowship, ASX and RRR were recipients of FAPEMIG graduate fellowships, and FPB was a recipient of an SIF graduate fellowship.

Funding

This study was funded by grant APQ-01926-14 (FAPEMIG) to PAZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poliane Alfenas-Zerbini.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animal performed by any of the authors.

Additional information

Handling Editor: Chan-Shing Lin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.P., Xavier, A.d., Bruckner, F.P. et al. Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch Virol 164, 1857–1862 (2019). https://doi.org/10.1007/s00705-019-04263-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-019-04263-4

Navigation