Advertisement

Archives of Virology

, Volume 164, Issue 1, pp 33–40 | Cite as

Characterisation of a newly detected bacteriophage infecting Bordetella bronchiseptica in swine

  • Yibao Chen
  • Lan Yang
  • Erchao Sun
  • Jiaoyang Song
  • Bin WuEmail author
Original Article

Abstract

A novel virulent bacteriophage, vB_BbrM_PHB04, infecting Bordetella bronchiseptica was isolated from wastewater collected at a swine farm in China. Phage vB_BbrM_PHB04 exhibited growth over a wide range of temperature and pH conditions and showed different efficiency of plating values and lytic spectra within the same strains at 25 °C and 37 °C. High-throughput sequencing revealed that vB_BbrM_PHB04 has a linear double-stranded DNA genome with 124 putative open reading frames. Overall, the genome of vB_BbrM_PHB04 showed very low similarity (the highest nucleotide identity 82%, 1% coverage) to other phage sequences in the GenBank database. Phylogenetic analysis indicated that vB_BbrM_PHB04 is a new member of the family Myoviridae. In addition, polymerase chain reaction-based detection of phage genes in phage-resistant B. bronchiseptica variants revealed no evidence of lysogenic activity of phage vB_BbrM_PHB04.

Notes

Acknowledgements

The complete genome sequence of phage vB_BbrM_PHB04 with annotation has been deposited in GenBank under accession number MF663786.

Funding

This study was funded by Research projects of agricultural public welfare industry of China (201403054), and National Science supported planning projects of Hubei Province of China (2014BBB010).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. I would like to declare on behalf of my co-authors that we have no conflict of interest.

Supplementary material

705_2018_4034_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)
705_2018_4034_MOESM2_ESM.docx (32 kb)
Supplementary material 2 (DOCX 32 kb)

References

  1. 1.
    Goodnow RA (1980) Biology of Bordetella bronchiseptica. Microbiol Res 44(4):722Google Scholar
  2. 2.
    Brockmeier SL (2004) Prior infection with Bordetella bronchiseptica increases nasal colonization by Haemophilus parasuis in swine. Vet Microbiol 99(1):75–78CrossRefPubMedGoogle Scholar
  3. 3.
    Lorenzo-Pajuelo B, Villanueva JL, Rodríguez-Cuesta J, Vergara-Irigaray N, Bernabeu-Wittel M, Garcia-Curiel A, de Tejada GM (2002) Cavitary pneumonia in an AIDS patient caused by an unusual Bordetella bronchiseptica variant producing reduced amounts of pertactin and other major antigens. J Clin Microbiol 40(9):3146–3154CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yacoub AT, Katayama M, Tran J, Zadikany R, Kandula M, Greene J (2014) Bordetella bronchiseptica in the immunosuppressed population–A case series and review. Mediterr J Hematol Infect Dis 6(1):e2014031.  https://doi.org/10.4084/MJHID.2014.031 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Akerley BJ, Monack DM, Falkow S, Miller JF (1992) The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica. J Bacteriol 174(3):980–990CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vergara-Irigaray N, Chávarri-Martínez A, Rodríguez-Cuesta J, Miller JF, Cotter PA, Martínez de Tejada G (2005) Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection. Infect Immun 73(2):748–760CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Prüller S, Rensch U, Meemken D, Kaspar H, Kopp PA, Klein G, Kehrenberg C (2015) Antimicrobial susceptibility of Bordetella bronchiseptica isolates from swine and companion animals and detection of resistance genes. PloS One 10(8):e0135703.  https://doi.org/10.1371/journal.pone.0135703 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petrovic A, Rakhely G, Knezevic P (2017) The first Siphoviridae family bacteriophages infecting Bordetella bronchiseptica isolated from environment. Microbial Ecol 73(2):368–377.  https://doi.org/10.1007/s00248-016-0847-0 CrossRefGoogle Scholar
  9. 9.
    Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, Preston A, Maskell DJ, Simons RW, Cotter PA, Parkhill J, Miller JF (2002) Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295(5562):2091–2094CrossRefPubMedGoogle Scholar
  10. 10.
    Chen YB, Sun EC, Song JY, Yang L, Wu B (2017) Complete genome sequence of a novel T7-like bacteriophage from a Pasteurella multocida capsular type A isolate. Curr Microbiol 75(5):574–579.  https://doi.org/10.1007/s00284-017-1419-3 CrossRefGoogle Scholar
  11. 11.
    Yang Y, Cai L, Ma R, Xu Y, Tong Y, Huang Y, Jiao N, Zhang R (2017) A novel roseosiphophage isolated from the oligotrophic South China Sea. Viruses 9(5):109.  https://doi.org/10.3390/v9050109 CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:265–272.  https://doi.org/10.1101/gr.097261.109 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Salzberg SL, Delcher AL, Kasif S, White O (1998) Microbial gene identification using interpolated Markov models. Nucleic Acids Res 26:544–548CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Delcher AL, Bratke KA, Powers EC, Salzberg SL (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23:673–679CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kawato Y, Yasuike M, Nakamura Y, Shigenobu Y, Fujiwara A, Sano M, Nakai T (2014) Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents. Appl Environmen Microbiol 81(3):874–881.  https://doi.org/10.1128/AEM.03038-14 CrossRefGoogle Scholar
  17. 17.
    Bardina C, Colom J, Spricigo DA, Otero J, Sánchez-Osuna M, Cortés P, Llagostera M (2016) Genomics of three new bacteriophages useful in the biocontrol of Salmonella. Front Microbiol 20(7):545.  https://doi.org/10.3389/fmicb.2016.00545 Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yibao Chen
    • 1
    • 2
  • Lan Yang
    • 1
    • 2
  • Erchao Sun
    • 1
    • 2
  • Jiaoyang Song
    • 1
  • Bin Wu
    • 1
    • 2
    Email author
  1. 1.State Key laboratory of Agricultural Microbiology, College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
  2. 2.The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina

Personalised recommendations