Skip to main content

Advertisement

Log in

Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Tumor growth, invasion and metastasis are dependent on angiogenesis. The Vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) signaling pathway plays a pivotal role in tumor angiogenesis and therefore represents a reasonable target for anti-angiogenesis/anti-tumor therapy. In the present study, we generated T4 recombinant phages expressing the extracellular domain of VEGFR2 (T4-VEGFR2) and investigated their anti-angiogenic activity. The T4-VEGFR2 phages were able to bind to VEGF specifically and inhibit VEGF-mediated phosphorylation of VEGFR2 and its downstream kinases such as extracellular signal-regulated kinase (ERK) and p38 mitogen activated protein kinase (MAPK). The in vitro experiments showed that the T4-VEGFR2 phages could inhibit VEGF-stimulated cell proliferation and migration of endothelial cells. Finally, administration of T4-VEGFR2 phages was able to suppress tumor growth and decrease microvascular density in murine models of Lewis lung carcinoma and colon carcinoma, and prolong the survival of tumor bearing mice. In conclusion, this study reveals that the recombinant T4-VEGFR2 phages generated using T4-based phage display system can inhibit VEGF-mediated tumor angiogenesis and the T4 phage display technology can therefore be used for the development of novel anti-cancer strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATCC:

American Type Culture Collection

bp:

Base pair

BSA:

Bovine serum albumin

CC:

Colon carcinoma

CSFV:

Swine fever virus

DMSO:

Dimethyl sulfoxide

DNA:

Deoxyribonucleic acid

ECGS:

Endothelial cell growth supplement

ELISA:

Enzyme-linked immunosorbent assay

ERK:

Extracellular-signal-regulated kinase

FBS:

Fetal bovine serum

FLK1:

Fetal liver kinase 1

FLT1:

fms-like tyrosine kinase-1

FLT4:

fms-like tyrosine kinase-4

FMDV:

Foot and mouth disease virus

HIV:

Human immunodeficiency virus

HOC:

Highly antigenic outer protein capsid

HRP:

Horseradish peroxidase

HUVEC:

Human umbilical vein endothelial cell

Ig:

Immunoglobulin

IHC:

Immunohistochemistry

KDR:

Kinase insert domain receptor

LLC:

Lewis lung carcinoma

MAPK:

Mitogen-activated protein kinase

MFI:

Mean fluorescence intensity

MOI:

Multiplicity of infection

MTT:

Methylthiazolyldiphenyl-tetrazolium bromide

MVD:

Microvascular density

OD:

Optical density

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

pERK:

Phospho-extracellular-signal-regulated kinase

PI3K:

Phosphoinositide-3-kinase

PKB:

Protein kinase B

PlGF:

Placental growth factor

pVEGFR2:

Phospho-vascular endothelial growth factor receptor 2

SD:

Standard deviation

SOC:

Small outer capsid

SPSS:

Statistical Package for Social Sciences

T4-W:

Wild-type T4

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21):1182–1186

    Article  PubMed  CAS  Google Scholar 

  2. Roy H, Bhardwaj S, Yla-Herttuala S (2006) Biology of vascular endothelial growth factors. FEBS Lett 580(12):2879–2887

    Article  PubMed  CAS  Google Scholar 

  3. Holmes DI, Zachary I (2005) The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol 6(2):209

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xin H, Zhong C, Nudleman E, Ferrara N (2016) Evidence for pro-angiogenic functions of VEGF-Ax. Cell 167(1):275–284 e276

    Article  PubMed  CAS  Google Scholar 

  5. Karkkainen MJ, Petrova TV (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19(49):5598–5605

    Article  PubMed  CAS  Google Scholar 

  6. Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Olsson AK, Dimberg A, Kreuger J, Claesson-Welsh L (2006) VEGF receptor signalling—in control of vascular function. Nat Rev Mol Cell Biol 7(5):359–371

    Article  PubMed  CAS  Google Scholar 

  8. Makinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC, Wise L, Mercer A, Kowalski H, Kerjaschki D, Stacker SA, Achen MG, Alitalo K (2001) Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20(17):4762–4773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23(5):1011–1027

    Article  PubMed  CAS  Google Scholar 

  10. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 63(5):601–615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, Peifer M, Frasca D, Koker M, Konig K, Meder L, Rauh D, Buettner R, Wolf J, Brekken RA, Neumaier B, Christofori G, Thomas RK, Ullrich RT (2013) Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 123(4):1732–1740

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Goel HL, Mercurio AM (2013) VEGF targets the tumour cell. Nat Rev Cancer 13(12):871–882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ren Z, Black LW (1998) Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 215(2):439–444

    Article  PubMed  CAS  Google Scholar 

  14. Shub DA, Casna NJ (1985) Bacteriophage T4, a new vector for the expression of cloned genes. Gene 37(1–3):31–36

    Article  PubMed  CAS  Google Scholar 

  15. Gamkrelidze M, Dabrowska K (2014) T4 bacteriophage as a phage display platform. Arch Microbiol 196(7):473–479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Malys N, Chang DY, Baumann RG, Xie D, Black LW (2002) A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction. J Mol Biol 319(2):289–304

    Article  PubMed  CAS  Google Scholar 

  17. Sathaliyawala T, Rao M, Maclean DM, Birx DL, Alving CR, Rao VB (2006) Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines. J Virol 80(15):7688–7698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ren ZJ, Tian CJ, Zhu QS, Zhao MY, Xin AG, Nie WX, Ling SR, Zhu MW, Wu JY, Lan HY, Cao YC, Bi YZ (2008) Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice. Vaccine 26(11):1471–1481

    Article  PubMed  CAS  Google Scholar 

  19. Wu J, Tu C, Yu X, Zhang M, Zhang N, Zhao M, Nie W, Ren Z (2007) Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: a powerful immunological approach. J Virol Methods 139(1):50–60

    Article  PubMed  CAS  Google Scholar 

  20. Ren ZJ, Lewis GK, Wingfield PT, Locke EG, Steven AC, Black LW (1996) Phage display of intact domains at high copy number: a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci 5(9):1833–1843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Weidner N (1995) Intratumor microvessel density as a prognostic factor in cancer. Am J Pathol 147(1):9–19

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11(8):1000–1017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Ferrara N, Hillan KJ, Gerber HP, Novotny W (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    Article  PubMed  CAS  Google Scholar 

  24. Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B (2016) Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 164:204–225

    Article  PubMed  CAS  Google Scholar 

  25. Ng EW, Shima DT, Calias P, Cunningham ET Jr, Guyer DR, Adamis AP (2006) Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev Drug Discov 5(2):123–132

    Article  PubMed  CAS  Google Scholar 

  26. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS (2002) VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17):11393–11398

    Article  PubMed  CAS  Google Scholar 

  27. Faivre S, Djelloul S, Raymond E (2006) New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 33(4):407–420

    Article  PubMed  CAS  Google Scholar 

  28. Fukasawa M, Korc M (2004) Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 10(10):3327–3332

    Article  PubMed  CAS  Google Scholar 

  29. Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O’Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ (2003) Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci USA 100(13):7785–7790

    Article  PubMed  CAS  Google Scholar 

  30. Andre T, Chibaudel B (2013) Aflibercept (Zaltrap((R))) approved in metastatic colorectal cancer. Bull Cancer 100(10):1023–1025

    Article  PubMed  CAS  Google Scholar 

  31. Shinkai A, Ito M, Anazawa H, Yamaguchi S, Shitara K, Shibuya M (1998) Mapping of the sites involved in ligand association and dissociation at the extracellular domain of the kinase insert domain-containing receptor for vascular endothelial growth factor. J Biol Chem 273(47):31283–31288

    Article  PubMed  CAS  Google Scholar 

  32. Ren S, Fengyu Zuo S, Zhao M, Wang X, Wang X, Chen Y, Wu Z, Ren Z (2011) Inhibition of tumor angiogenesis in lung cancer by T4 phage surface displaying mVEGFR2 vaccine. Vaccine 29(34):5802–5811

    Article  PubMed  CAS  Google Scholar 

  33. Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14(1):53–65

    Article  PubMed  CAS  Google Scholar 

  34. Srinivasan R, Zabuawala T, Huang H, Zhang J, Gulati P, Fernandez S, Karlo JC, Landreth GE, Leone G, Ostrowski MC (2009) Erk1 and Erk2 regulate endothelial cell proliferation and migration during mouse embryonic angiogenesis. PLoS One 4(12):e8283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Yu J, Bian D, Mahanivong C, Cheng RK, Zhou W, Huang S (2004) p38 Mitogen-activated protein kinase regulation of endothelial cell migration depends on urokinase plasminogen activator expression. J Biol Chem 279(48):50446–50454

    Article  PubMed  CAS  Google Scholar 

  36. Doss J, Culbertson K, Hahn D, Camacho J, Barekzi N (2017) A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9(3):50

    Article  PubMed Central  CAS  Google Scholar 

  37. Bruttin A, Brussow H (2005) Human volunteers receiving Escherichia coli phage T4 orally: a safety test of phage therapy. Antimicrob Agents Chemother 49(7):2874–2878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zhaojun Ren (VersatileBio LLC, MD, USA) for providing the pJKS plasmid and the T4-e-phage. We also thank MogoEdit (http://www.mogoedit.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This work was supported by Science and Technology Development Program of Henan Province (No. 132300410274), National Natural Science Foundation of China (No. 81301963), Natural Science Foundation of Henan Province (No. 162300410040) and Outstanding Youth Science Foundation of Henan University (No. yqpy20140036).

Author information

Authors and Affiliations

Authors

Contributions

SZ, GD and LW contributed equally to this work. SZ and XR designed the study. SZ analyzed the data, and wrote the manuscript. GD, LW and YW performed the experiments. ZH and WY provided critical review and comments. WM supervised the study.

Corresponding authors

Correspondence to Shuguang Zuo or Xuequn Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Handling Editor: Chan-Shing Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, S., Dai, G., Wang, L. et al. Suppression of angiogenesis and tumor growth by recombinant T4 phages displaying extracellular domain of vascular endothelial growth factor receptor 2. Arch Virol 164, 69–82 (2019). https://doi.org/10.1007/s00705-018-4026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4026-0

Navigation