Skip to main content
Log in

Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Melon plants with severe yellowing symptoms from in Brazil were analyzed by high-throughput sequencing. Sequences homologous to the genome of the polerovirus cucurbit aphid-borne yellows virus (CABYV) were frequently retrieved. Two draft CABYV genomes were assembled from two pooled melon samples that contained an identical putative recombinant fragment in the 3′ region with an unknown polerovirus. The complete genomes of these isolates revealed by Sanger sequencing share 96.8% nucleotide identity, while both sequences share 73.7% nucleotide identity with a CABYV-N isolate from France. A molecular-clock analysis suggested that CABYV was introduced into Brazil ~ 68 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Santos AA, Cardoso JE, Bezerra MA et al (2008) Progress analysis and damages due to melon yellowing-associated virus. Summa Phytopathol. 34:359–360

    Article  Google Scholar 

  2. Costa TM, Blawid R, Costa AC Jr. et al (2017) Complete genome sequence of melon yellowing-associated virus from melon plants with the severe yellowing disease in Brazil. Arch Virol 162:3899–3901

    Article  PubMed  CAS  Google Scholar 

  3. Lecoq H, Bourdin D, Wipf-Scheibel C (1992) A new yellowing disease of cucurbits caused by a luteovirus, curcubit aphid-born yellow virus. Plant Pathol 41:749–761

    Article  Google Scholar 

  4. Mnari-Hattab M, Kummert J, Roussel S et al (2005) First report of Cucurbit aphid-borne yellows virus in Tunisia causing yellows on five cucurbitacious species. Plant Dis 89:776

    Article  PubMed  CAS  Google Scholar 

  5. Kassem MA, Sempere RN, Juarez M et al (2007) Cucurbit aphid-borne yellows virus is prevalent in field-grown cucurbit crops of southeastern Spain. Plant Dis 91:232–238

    Article  PubMed  CAS  Google Scholar 

  6. Blawid R, Silva JMF, Nagata T (2017) Discovering and sequencing new plant viral genomes by next-generation sequencing: description of a practical pipeline. Ann Appl Biol 170:301–314

    Article  Google Scholar 

  7. Nicolini C, Inoue-Nagata AK, Nagata T (2015) Complete genome sequence of a proposed new tymovirus, tomato blistering mosaic virus. Arch Virol 160:609–612

    Article  PubMed  CAS  Google Scholar 

  8. Ronquist F, Teslenko M, van der Mark P et al (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  9. Darriba D, Taboada GL, Doallo R et al (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Darriba D, Taboada GL, Doallo R et al (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  12. Martin DP, Murrel B, Golden M et al (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    Article  PubMed  PubMed Central  Google Scholar 

  13. Posada D (2002) Evaluation of methods for detecting recombination from DNA sequences: empirical data. Mol Biol Evol 19:708–717

    Article  PubMed  CAS  Google Scholar 

  14. Rambaut A, Lam TT, Carvalho LM et al (2016) Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2:vew007

    Article  PubMed  PubMed Central  Google Scholar 

  15. Drummond AJ, Suchard MA, Xie D et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Bielejec F, Rambaut A, Suchard MA et al (2011) SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics 27:2910–2912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Csorba T, Lózsa R, Hutvágner G et al (2010) Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1. Plant J 62:463–472

    Article  PubMed  CAS  Google Scholar 

  18. Guilley H, Wipf-Scheibel C, Richards K et al (1994) Nucleotide sequence of cucurbit aphid-borne yellows luteovirus. Virology 202:1012–1017

    Article  PubMed  CAS  Google Scholar 

  19. Smirnova E, Firth AE, Miller WA et al (2015) Discovery of a small non-AUG-initiated ORF in poleroviruses and luteoviruses that is required for long-distance movement. Plos Pathog 11:e1004868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Knierim D, Deng TC, Tsai WS et al (2010) Molecular identification of three distinct Polerovirus species and a recombinant Cucurbit aphid-borne yellows virus strain infecting cucurbit crops in Taiwan. Plant Pathol 59:991–1002

    Article  CAS  Google Scholar 

  21. Pagán I, Holmes EC (2010) Long-term evolution of the Luteoviridae: time scale and mode of virus speciation. J Virol 84:6177–6187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Knierim D, Tsai WS, Deng TC et al (2013) Full-length genome sequences of four polerovirus isolates infecting cucurbits in Taiwan determined from total RNA extracted from field samples. Plant Pathol 62:633–641

    Article  CAS  Google Scholar 

  23. Ibaba JD, Laing MD, Gubba A (2016) Pepo aphid-borne yellows virus: a new species in the genus Polerovirus. Virus Genes 53:134–136

    Article  PubMed  CAS  Google Scholar 

  24. Knierim D, Maiss E, Kenyon L et al (2015) First full-length genome sequence of the polerovirus luffa aphid-borne yellows virus (LABYV) reveals the presence of at least two consensus sequences in an isolate from Thailand. Arch Virol 160:2633–2636

    Article  PubMed  CAS  Google Scholar 

  25. Kassem MA, Juarez M, Gómez P et al (2013) Genetic diversity and potential vectors and reservoirs of Cucurbit aphid-borne yellows virus in southeastern Spain. Phytopathology 103:1188–1197

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CNPq with the project number of 401755/2013-4. MAA work was supported by grant AGL2015-65838 (Ministerio de Economía, Industria y Competitividad, Spain). AKIN and TN are CNPq fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuya Nagata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Robert H. A. Coutts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 37 kb)

Supplementary Figure 1.

Animation showing the predicted distribution route of CABYV based on the molecular clock for the P0 gene. (MP4 16932 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costa, T.M., Blawid, R., Aranda, M.A. et al. Cucurbit aphid-borne yellows virus from melon plants in Brazil is an interspecific recombinant. Arch Virol 164, 249–254 (2019). https://doi.org/10.1007/s00705-018-4024-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4024-2

Navigation