Skip to main content

Advertisement

Log in

Performance evaluation of a newly developed molecular assay for the accurate diagnosis of gastroenteritis associated with norovirus of genogroup II

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The performance of a newly proposed fully automated cassette-based sample-to-results solution for norovirus (NoV) detection, InGenius Norovirus ELITe MGB®, was evaluated. A total of 120 selected archival stool samples from children hospitalized for acute gastroenteritis were used to compare the results to a reference real-time RT-PCR. The InGenius NoV assay showed optimal diagnostic accuracy (sensitivity, 100%; specificity, 95.7%) and was able to correctly detect the entire wide panel of epidemiologically relevant genotypes tested. These preliminary results suggest that the InGenius NoV assay can be recommended as a valuable method for accurate diagnosis of NoV GII infection in epidemic and sporadic gastroenteritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Chen H, Hu Y (2016) Molecular diagnostic methods for detection and characterization of human noroviruses. Open Microbiol J 10:78–89. https://doi.org/10.2174/1874285801610010078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vinjé J (2015) Advances in laboratory methods for detection and typing of norovirus. J Clin Microbiol 53:373–381. https://doi.org/10.1128/JCM.01535-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Belliot G, Lopman BA, Ambert-Balay K, Pothier P (2014) The burden of norovirus gastroenteritis: an important foodborne and healthcare-related infection. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20:724–730. https://doi.org/10.1111/1469-0691.12722

    Article  CAS  Google Scholar 

  4. van Beek J, de Graaf M, Al-Hello H et al (2018) Molecular surveillance of norovirus, 2005–16: an epidemiological analysis of data collected from the NoroNet network. Lancet Infect Dis 18:545–553. https://doi.org/10.1016/S1473-3099(18)30059-8

    Article  PubMed  Google Scholar 

  5. Siebenga JJ, Vennema H, Zheng D-P et al (2009) Norovirus illness is a global problem: emergence and spread of norovirus GII.4 variants, 2001–2007. J Infect Dis 200:802–812. https://doi.org/10.1086/605127

    Article  PubMed  Google Scholar 

  6. Cannon JL, Barclay L, Collins NR et al (2017) Genetic and epidemiologic trends of norovirus outbreaks in the United States from 2013 to 2016 demonstrated emergence of novel GII.4 recombinant viruses. J Clin Microbiol 55:2208–2221. https://doi.org/10.1128/JCM.00455-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Giammanco GM, De Grazia S, Bonura F et al (2017) Norovirus GII.17 as major epidemic strain in italy, Winter 2015–2016. Emerg Infect Dis 23:1206–1208. https://doi.org/10.3201/eid2307.161255

    Article  PubMed  PubMed Central  Google Scholar 

  8. Niendorf S, Jacobsen S, Faber M et al (2017) Steep rise in norovirus cases and emergence of a new recombinant strain GII.P16-GII.2, Germany, Winter 2016. Euro Surveill. https://doi.org/10.2807/1560-7917.es.2017.22.4.30447

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Graaf M, van Beek J, Vennema H et al (2015) Emergence of a novel GII.17 norovirus—end of the GII.4 era? Euro Surveill 20(26):21178

    Article  Google Scholar 

  10. Robilotti E, Deresinski S, Pinsky BA (2015) Norovirus. Clin Microbiol Rev 28:134–164. https://doi.org/10.1128/CMR.00075-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Costantini V, Grenz L, Fritzinger A et al (2010) Diagnostic accuracy and analytical sensitivity of IDEIA Norovirus assay for routine screening of human norovirus. J Clin Microbiol 48:2770–2778. https://doi.org/10.1128/JCM.00654-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phillips G, Lopman B, Tam CC et al (2009) Diagnosing norovirus-associated infectious intestinal disease using viral load. BMC Infect Dis 9:63. https://doi.org/10.1186/1471-2334-9-63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Corcoran MS, van Well GTJ, van Loo IHM (2014) Diagnosis of viral gastroenteritis in children: interpretation of real-time PCR results and relation to clinical symptoms. Eur J Clin Microbiol Infect Dis 33:1663–1673. https://doi.org/10.1007/s10096-014-2135-6

    Article  CAS  PubMed  Google Scholar 

  14. Pang XL, Lee B, Boroumand N et al (2004) Increased detection of rotavirus using a real time reverse transcription-polymerase chain reaction (RT-PCR) assay in stool specimens from children with diarrhea. J Med Virol 72:496–501. https://doi.org/10.1002/jmv.20009

    Article  CAS  PubMed  Google Scholar 

  15. Kageyama T, Kojima S, Shinohara M et al (2003) Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol 41:1548–1557. https://doi.org/10.1128/JCM.41.4.1548-1557.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Noel JS, Lee TW, Kurtz JB et al (1995) Typing of human astroviruses from clinical isolates by enzyme immunoassay and nucleotide sequencing. J Clin Microbiol 33:797–801

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kojima S, Kageyama T, Fukushi S et al (2002) Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods 100:107–114. https://doi.org/10.1016/S0166-0934(01)00404-9

    Article  CAS  PubMed  Google Scholar 

  18. Vennema H, de Bruin E, Koopmans M (2002) Rational optimization of generic primers used for Norwalk-like virus detection by reverse transcriptase polymerase chain reaction. J Clin Virol 25:233–235. https://doi.org/10.1016/S1386-6532(02)00126-9

    Article  CAS  PubMed  Google Scholar 

  19. Kroneman A, Vega E, Vennema H et al (2013) Proposal for a unified norovirus nomenclature and genotyping. Adv Virol 158:2059–2068. https://doi.org/10.1007/s00705-013-1708-5

    Article  CAS  Google Scholar 

  20. Shioda K, Barclay L, Becker-Dreps S et al (2017) Can use of viral load improve norovirus clinical diagnosis and disease attribution? Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofx131

    Article  Google Scholar 

  21. Partridge DG, Evans CM, Raza M et al (2012) Lessons from a large norovirus outbreak: impact of viral load, patient age and ward design on duration of symptoms and shedding and likelihood of transmission. J Hosp Infect 81:25–30. https://doi.org/10.1016/j.jhin.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  22. La Rosa G, Pourshaban M, Iaconelli M, Muscillo M (2008) Detection of genogroup IV noroviruses in environmental and clinical samples and partial sequencing through rapid amplification of cDNA ends. Adv Virol 153:2077–2083. https://doi.org/10.1007/s00705-008-0241-4

    Article  CAS  Google Scholar 

  23. Vega E, Barclay L, Gregoricus N et al (2014) Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009 to 2013. J Clin Microbiol 52:147–155. https://doi.org/10.1128/JCM.02680-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Butot S, Le Guyader FS, Krol J et al (2010) Evaluation of various real-time RT-PCR assays for the detection and quantitation of human norovirus. J Virol Methods 167:90–94. https://doi.org/10.1016/j.jviromet.2010.03.018

    Article  CAS  PubMed  Google Scholar 

  25. Zhuo R, Cho J, Qiu Y et al (2017) High genetic variability of norovirus leads to diagnostic test challenges. J Clin Virol Off Publ Pan Am Soc Clin Virol 96:94–98. https://doi.org/10.1016/j.jcv.2017.10.003

    Article  Google Scholar 

  26. Giammanco GM, De Grazia S, Tummolo F et al (2013) Norovirus GII.4/Sydney/2012 in Italy, winter 2012–2013. Emerg Infect Dis 19:1348–1349. https://doi.org/10.3201/eid1908.130619

    Article  PubMed  PubMed Central  Google Scholar 

  27. Medici MC, Tummolo F, De Grazia S et al (2015) Epidemiological dynamics of norovirus GII.4 variant New Orleans 2009. J Gen Virol 96:2919–2927. https://doi.org/10.1099/vir.0.000204

    Article  CAS  PubMed  Google Scholar 

  28. De Grazia S, Lanave G, Giammanco GM et al (2018) Nationwide hospital-based surveillance in Italy reveals major changes in norovirus epidemiology between 2015 and 2016. PloS One (under review)

  29. Medici MC, Tummolo F, Martella V et al (2014) Novel recombinant GII.P16_GII.13 and GII.P16_GII.3 norovirus strains in Italy. Virus Res 188:142–145. https://doi.org/10.1016/j.virusres.2014.04.005

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank ELITechGroup Molecular Diagnostics for providing InGenius kits and consumables used in this study and additional financial support. The funders had no role in the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona De Grazia.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was granted by University Hospital Ethical Committee Palermo 1 (No. 02/2017).

Additional information

Handling Editor: Tim Skern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Grazia, S., Bonura, F., Cappa, V. et al. Performance evaluation of a newly developed molecular assay for the accurate diagnosis of gastroenteritis associated with norovirus of genogroup II. Arch Virol 163, 3377–3381 (2018). https://doi.org/10.1007/s00705-018-4010-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-4010-8

Navigation