Molecular detection and phylogenetic analysis of megalocytivirus in Brazilian ornamental fish

  • Samara Rita de Lucca Maganha
  • Pedro Henrique Magalhães Cardoso
  • Simone de Carvalho Balian
  • Sabrina Ribeiro de Almeida-Queiroz
  • Andrezza Maria Fernandes
  • Ricardo Luiz Moro de Sousa
Brief Report

Abstract

Megalocytiviruses have a worldwide distribution, causing serious economic loss to the global aquaculture industry. They also present a threat to ornamental fish trade because megalocytiviral infections have unspecified symptoms, making early diagnosis difficult. In this study, 100 ornamental fish from 24 different species were tested by PCR for megalocytivirus, with a 47% positive rate being identified. Phylogenetic reconstruction, based on the major capsid protein (MCP) gene, clustered all Brazilian samples into a single clade, showing identity values ranging from 99% to 100% when compared to each other. This is the first report of megalocytivirus infection in some ornamental fish species in Brazil.

Notes

Acknowledgements

This research was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Grant number 2014/04327-7).

Compliance with ethical standards

Conflict of interest

Samara Rita de Lucca Maganha declares that she has no conflict of interest. Pedro Henrique Magalhães Cardoso declares that he has no conflict of interest. Simone de Carvalho Balian declares that she has no conflict of interest. Sabrina Ribeiro de Almeida Queiroz declares that she has no conflict of interest. Andrezza Maria Fernandes declares that she has no conflict of interest. Ricardo Luiz Moro de Sousa declares that he has no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed (CEUA n° 6782040416).

References

  1. 1.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform 4:1–4CrossRefGoogle Scholar
  3. 3.
    Chen XH, Lin KB, Wang XW (2003) Outbreaks of an iridovirus disease in maricultured large yellow croaker, Larimichthys crocea (Richardson), in China. J Fish Dis 26:615–619CrossRefPubMedGoogle Scholar
  4. 4.
    Chinchar VG, Hick P, Ince IA, Jancovich JK, Marschang R, Qin Q, Subramaniam K, Waltzek TB, Whittington R, Williams T, Zhang Q (2016) Family Iridoviridae. Virus taxonomy tenth report of the international committee on taxonomy of viruses. J Gen Virol 98:890–891Google Scholar
  5. 5.
    Choi SK, Kwon SR, Nan YK, Kim SK, Kim KH (2006) Organ distribution of red sea bream iridovirus (RSIV), DNA in asymptomatic yearling and fingerling rock bream (Oplegnathus fasciatus) and effects of water temperature on transmission of RSIV into acute phase. Aquaculture 256:23–26CrossRefGoogle Scholar
  6. 6.
    Go J, Lancaster M, Deece K, Dhungyel O, Whittington R (2006) The molecular epidemiology of iridovirus in Murray cod (Maccullochella peelii peelii) and dwarf gourami (Colisa lalia) from distant biogeographical regions suggests a link between trade in ornamental fish and emerging iridoviral diseases. Mol Cell Probes 20:212–222CrossRefPubMedGoogle Scholar
  7. 7.
    Go J, Whittington R (2006) Experimental transmission and virulence of a megalocytivirus (Family Iridoviridae) of dwarf gourami (Colisa lalia) from Asia in Murray cod (Maccullochella peelii peelii) in Australia. Aquaculture 258:140–149CrossRefGoogle Scholar
  8. 8.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  9. 9.
    He JG, Wang SP, Jeng K, Huang ZJ, Chan SM (2000) Systemic disease caused by an iridovirus-like agent in cultured mandarin fish, Siniperca chuatsi (Basilewsky), in China. J Fish Dis 23:219–222CrossRefGoogle Scholar
  10. 10.
    He JG, Zeng K, Weng SP, Chan SM (2002) Experimental transmission, pathogenicity and physical–chemical properties of infectious spleen and kidney necrosis virus (ISKNV). Aquaculture 204:11–24CrossRefGoogle Scholar
  11. 11.
    Inouye K, Yamano K, Maeno Y, Nakajima K, Matsuoka M, Wada Y, Sorimachi M (1992) Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathol 27:19–27CrossRefGoogle Scholar
  12. 12.
    Jeong JB, Kim HY, Jun LJ, Lyu JH, Park NJ, Kim JK, Jeong HD (2008) Outbreaks and risks of infectious spleen and kidney necrosis virus disease in freshwater ornamental fishes. Dis Aquat Org 78:209–215CrossRefPubMedGoogle Scholar
  13. 13.
    Kurita J, Nakajima K (2012) Megalocytiviruses. Viruses 4:521–538CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kumar S, Stecher G, Tamura K (2016) MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874CrossRefPubMedGoogle Scholar
  15. 15.
    Livengood EJ, Chapman FA (2007) The ornamental fish trade: an introduction with perspectives for responsible aquarium fish ownership. Institute of Food and Agricultural Sciences, Gainesville, pp 1–8Google Scholar
  16. 16.
    Mao J, Green DE, Fellers G, Chinchar VG (1999) Molecular characterization of iridoviruses isolated from sympatric amphibians and fish. Virus Res 63:45–52CrossRefPubMedGoogle Scholar
  17. 17.
    Nolan D, Stephens F, Crockford M, Jones JB, Snow M (2015) Detection and characterization of viruses of the genus Megalocytivirus in ornamental fish imported into an Australian border quarantine premises: an emerging risk to national biosecurity. J Fish Dis 38:187–195CrossRefPubMedGoogle Scholar
  18. 18.
    OIE (2012) Manual of diagnostic tests for aquatic animals. Chapter 2.3.7 red sea bream iridoviral diseaseGoogle Scholar
  19. 19.
    Rimmer AE, Becker JA, Tweedie A, Lintermans M, Landos M, Stephens F, Whittington RJ (2015) Detection of dwarf gourami iridovirus (Infectious spleen and kidney necrosis virus) in populations of ornamental fish prior to and after importation into Australia, with the first evidence of infection in domestically farmed Platy (Xiphophorus maculatus). Prev Vet Med 122:181–194CrossRefPubMedGoogle Scholar
  20. 20.
    Schmidt HA, Strimmer K, Vingron M, Von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504CrossRefPubMedGoogle Scholar
  21. 21.
    Shi CY, Wang YG, Yang SL, Huang J, Wang QY (2004) The first report of an iridovirus-like agent infection in farmed turbot, Scophthalmus maximus, in China. Aquaculture 236:11–25CrossRefGoogle Scholar
  22. 22.
    Sriwanayos P, Francis-Floyd R, Stidworthy MF, Petty BD, Kelley K, Waltzek TB (2013) Megalocytivirus infection in orbiculate batfish Platax orbicularis. Dis Aquat Org 105:1–8CrossRefPubMedGoogle Scholar
  23. 23.
    Strimmer K, Von Haeseler A (1997) Likelihood mapping: a simple method to visualize phylogenetic content of a sequence alignment. Proc Natl Acad Sci 94:6815–6819CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Subramaniam K, Shariff M, Omar AR, Hair-Bejo M, Ong BL (2014) Detection and molecular characterization of infectious spleen and kidney necrosis virus from major ornamental fish breeding states in Peninsular Malaysia. J Fish Dis 37:609–618CrossRefPubMedGoogle Scholar
  25. 25.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Waltzek TB, Marty GD, Alfaro ME, Bennett WR, Garver KA, Haulena M, Weber ES III, Hedrick RP (2012) Systemic iridovirus from threespine stickleback Gasterosteus aculeatus represents a new megalocytivirus species (family Iridoviridae). Dis Aquat Org 98:41–56CrossRefPubMedGoogle Scholar
  27. 27.
    Wang YQ, Lü L, Weng SP, Huang JN, Chan SM, He JG (2007) Molecular epidemiology and phylogenetic analysis of a marine fish infectious spleen and kidney necrosis virus-like (ISKNV-like) virus. Arch Virol 152:763–773CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Q, Zeng WW, Li KB, Chang OQ, Liu C, Wu GH, Shi CB, Wu SQ (2011) Outbreaks of an iridovirus in marbled sleepy goby, Oxyeleotris marmoratus (Bleeker), cultured in southern China. J Fish Dis 34:399–402CrossRefPubMedGoogle Scholar
  29. 29.
    Weber ES III, Waltzek TB, Young DA, Twitchell EL, Gates AE, Vagelli A, Risatti GR, Hedrick RP, Frasca Junior S (2009) Systemic iridovirus infection in the Banggai cardinalfish (Pterapogon kauderni Koumans 1933). J Vet Diagn Investig 21:306–332CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Samara Rita de Lucca Maganha
    • 1
  • Pedro Henrique Magalhães Cardoso
    • 2
  • Simone de Carvalho Balian
    • 2
  • Sabrina Ribeiro de Almeida-Queiroz
    • 1
  • Andrezza Maria Fernandes
    • 1
  • Ricardo Luiz Moro de Sousa
    • 1
  1. 1.Faculty of Animal Science and Food EngineeringUniversity of Sao PauloPirassunungaBrazil
  2. 2.Faculty of Veterinary Medicine and Animal ScienceUniversity of Sao PauloSão PauloBrazil

Personalised recommendations