Skip to main content
Log in

Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here, we present a comprehensive analysis of the H5N8/H5N5 highly pathogenic avian influenza (HPAI) virus strains detected in the Czech Republic during an outbreak in 2017. Network analysis of the H5 Hemagglutinin (HA) from 99% of the outbreak localities suggested that the diversity of the Czech H5N8/H5N5 viruses was influenced by two basic forces: local microevolution and independent incursions. The geographical occurrence of the central node H5 HA sequences revealed three eco-regions, which apparently played an important role in the origin and further spread of the local H5N8/HPAI variants across the country. A plausible explanation for the observed pattern of diversity is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Brown I, Mulatti P, Smietanka K et al (2017) Avian influenza overview October 2016–August 2017. EFSA J 15:5018

    Google Scholar 

  2. Lee YJ, Kang HM, Lee EK et al (2014) Novel reassortant influenza A(H5N8) viruses, South Korea, 2014. Emerg Infect Dis 20:1087–1089. https://doi.org/10.3201/eid2006.140233

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Vries E, Guo H, Dai M et al (2015) Rapid emergence of highly pathogenic avian influenza subtypes from a subtype H5N1 hemagglutinin variant. Emerg Infect Dis 215:842–846. https://doi.org/10.3201/eid2105.141927

    Article  CAS  Google Scholar 

  4. Global Consortium for H5N8 and Related Influenza Viruses (2016) Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354:213–217. https://doi.org/10.1126/science.aaf8852

    Article  CAS  Google Scholar 

  5. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  PubMed  CAS  Google Scholar 

  6. Global Initiative on Sharing All Influenza Data. http://platform.gisaid.org/epi3/frontend#61285e. Accessed 5 Jan 2018

  7. Savić V (2017) Novel reassortant clade 2.3.4.4 avian influenza A(H5N5) virus in wild birds and poultry, Croatia, 2016–2017. Vet Archiv 87:377–396

    Google Scholar 

  8. Fusaro A, Monne I, Mulatti P et al (2017) Genetic diversity of highly pathogenic avian influenza A(H5N8/H5N5) viruses in Italy, 2016–17. Emerg Infect Dis 23:1543–1547. https://doi.org/10.3201/eid2309.170539

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beerens N, Heutink R, Bergervoet SA et al (2017) Multiple reassorted viruses as cause of highly pathogenic avian influenza A(H5N8) virus epidemic, The Netherlands, 2016. Emerg Infect Dis 23:1974–1981. https://doi.org/10.3201/eid2312.171062

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pohlmann A, Starick E, Grund C et al (2018) Swarm incursions of reassortants of highly pathogenic avian influenza virus strains H5N8 and H5N5, clade 2.3.4.4b, Germany, winter 2016/17. Sci Rep 8:15. https://doi.org/10.1038/s41598-017-16936-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sengupta R, Rosenshein L, Gilbert M et al (2007) Ecoregional dominance in spatial distribution of avian influenza (H5N1) outbreaks. Emerg Infect Dis 13:1269–1277

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bevins SN, Pedersen K, Lutman MW et al (2014) Large-Scale Avian Influenza Surveillance in Wild Birds throughout the United States. PLoS One 9:e104360. https://doi.org/10.1371/journal.pone.0104360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Krauss S, Stallknecht DE, Negovetich NJ et al (2010) Coincident ruddy turnstone migration and horseshoe crab spawning creates an ecological ‘hot spot’ for influenza viruses. Proc Biol Sci 277:3373–3379. https://doi.org/10.1098/rspb.2010.1090

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pfeiffer DU, Otte MJ, Roland-Holst D et al (2011) Implications of global and regional patterns of highly pathogenic avian influenza virus H5N1 clades for risk management. Vet J 190:309–316. https://doi.org/10.1016/j.tvjl.2010.12.022

    Article  PubMed  Google Scholar 

  15. Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  PubMed  CAS  Google Scholar 

  16. Wagner A (2014) A genotype network reveals homoplastic cycles of convergent evolution in influenza A (H3N2) haemagglutinin. Proc Biol Sci 281:20132763. https://doi.org/10.1098/rspb.2013.2763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. BirdLife International (2018) Important Bird Areas factsheet: Trebonsko (Trebon region). http://www.birdlife.org on 29/01/2018. Accessed 31 Jan 2018

  18. Nagy A, Cerníková L, Jiřincová H et al (2014) Local-scale diversity and between-year “frozen evolution” of avian influenza A viruses in nature. PLoS One 9:e103053. https://doi.org/10.1371/journal.pone.0103053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Nagy A, Černíková L, Křivda V et al (2012) Digital genotyping of avian influenza viruses of H7 subtype detected in central Europe in 2007–2011. Virus Res 165:126–133. https://doi.org/10.1016/j.virusres.2012.02.005

    Article  PubMed  CAS  Google Scholar 

  20. Nagy A, Vostinakova V, Pindova Z et al (2009) Molecular and phylogenetic analysis of the H5N1 avian influenza virus caused the first highly pathogenic avian influenza outbreak in poultry in the Czech Republic in 2007. Vet Microbiol 133:257–263. https://doi.org/10.1016/j.vetmic.2008.07.013

    Article  PubMed  CAS  Google Scholar 

  21. Musilová Z, Musil P, Zouhar J et al (2015) Long-term trends, total numbers and species richness of increasing waterbird populations at sites on the edge of their winter range: cold-weather refuge sites are more important than protected sites. J Ornithol 156:923–932. https://doi.org/10.1007/s10336-015-1223-4

    Article  Google Scholar 

  22. Musil P, Musilová Z, Fuchs R (2011) Long-term changes in numbers and distribution of wintering waterbirds in the Czech Republic, 1966–2008. Bird Stud 58:450–460. https://doi.org/10.1080/00063657.2011.603289

    Article  Google Scholar 

  23. Adam M, Musil P, Musilová Z (2016) Trends in numbers of wintering waterbird species in Czech Republic between 1966 and 2015. Aythya 6:27–39

    Google Scholar 

Download references

Acknowledgements

We would like to thank all of the contributors to the Global Initiative on Sharing All Influenza Data (GISAID) database.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Nagy.

Ethics declarations

Funding

This work was performed in connection with the National surveillance of highly pathogenic avian influenza viruses of the H5N8 and H5N5 subtypes in the Czech Republic in 2017, and was not funded by additional financial sources.

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Handling Editor: Ayato Takada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 310 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, A., Dán, Á., Černíková, L. et al. Microevolution and independent incursions as main forces shaping H5 Hemagglutinin diversity during a H5N8/H5N5 highly pathogenic avian influenza outbreak in Czech Republic in 2017. Arch Virol 163, 2219–2224 (2018). https://doi.org/10.1007/s00705-018-3833-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3833-7

Navigation