Archives of Virology

, Volume 163, Issue 8, pp 2065–2072 | Cite as

PCR array profiling of antiviral genes in human embryonic kidney cells expressing human coronavirus OC43 structural and accessory proteins

  • Meshal Beidas
  • Wassim Chehadeh
Original Article


Human coronavirus OC43 (HCoV-OC43) is a respiratory virus that usually causes a common cold. However, it has the potential to cause severe infection in young children and immunocompromised adults. Both SARS-CoV and MERS-CoV were shown to express proteins with the potential to evade early innate immune responses. However, the ability of HCoV-OC43 to antagonise the intracellular antiviral defences has not yet been investigated. The potential role of the HCoV-OC43 structural (M and N) and accessory proteins (ns2a and ns5a) in the alteration of antiviral gene expression was investigated in this study. HCoV-OC43M, N, ns2a and ns5a proteins were expressed in human embryonic kidney 293 (HEK-293) cells before challenge with Sendai virus. The Human Antiviral Response PCR array was used to profile the antiviral gene expression in HEK-293 cells. Over 30 genes were downregulated in the presence of one of the HCoV-OC43 proteins, e.g. genes representing mitogen-activated protein kinases, toll-like receptors, interferons, interleukins, and signaling transduction proteins. Our findings suggest that similarly to SARS-CoV and MERS-CoV, HCoV-OC43 has the ability to downregulate the transcription of genes critical for the activation of different antiviral signaling pathways. Further studies are needed to confirm the role of HCoV-OC43 structural and accessory proteins in antagonising antiviral gene expression.


Compliance with ethical standards


This work was supported by Kuwait University Research Administration Grant no. YM 04/15.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633PubMedGoogle Scholar
  2. 2.
    Vijgen L, Keyaerts E, Lemey P et al (2005) Circulation of genetically distinct contemporary human coronavirus OC43 strains. Virology 337:85–92. CrossRefPubMedGoogle Scholar
  3. 3.
    Larson HE, Reed SE, Tyrrell DA (1980) Isolation of rhinoviruses and coronaviruses from 38 colds in adults. J Med Virol 5:221–229CrossRefPubMedGoogle Scholar
  4. 4.
    Lepiller Q, Barth H, Lefebvre F et al (2013) High incidence but low burden of coronaviruses and preferential associations between respiratory viruses. J Clin Microbiol 51:3039–3046. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Razuri H, Malecki M, Tinoco Y et al (2015) Human coronavirus-associated influenza-like illness in the community setting in Peru. Am J Trop Med Hyg 93:1038–1040. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Talbot HK, Shepherd BE, Crowe JEJ et al (2009) The pediatric burden of human coronaviruses evaluated for twenty years. Pediatr Infect Dis J 28:682–687. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Geller C, Varbanov M, Duval RE (2012) Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 4:3044–3068. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Arbour N, Cote G, Lachance C et al (1999) Acute and persistent infection of human neural cell lines by human coronavirus OC43. J Virol 73:3338–3350PubMedPubMedCentralGoogle Scholar
  9. 9.
    Arbour N, Day R, Newcombe J, Talbot PJ (2000) Neuroinvasion by human respiratory coronaviruses. J Virol 74:8913–8921CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yeh EA, Collins A, Cohen ME et al (2004) Detection of coronavirus in the central nervous system of a child with acute disseminated encephalomyelitis. Pediatrics 113:e73–e76CrossRefPubMedGoogle Scholar
  11. 11.
    Morfopoulou S, Brown JR, Davies EG et al (2016) Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med 375:497–498. CrossRefPubMedGoogle Scholar
  12. 12.
    Ye J, Zhang B, Xu J et al (2007) Molecular pathology in the lungs of severe acute respiratory syndrome patients. Am J Pathol 170:538–545. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fang X, Gao J, Zheng H et al (2007) The membrane protein of SARS-CoV suppresses NF-kappaB activation. J Med Virol 79:1431–1439. CrossRefPubMedGoogle Scholar
  14. 14.
    Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M et al (2007) Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol 81:548–557. CrossRefPubMedGoogle Scholar
  15. 15.
    Siu K-L, Chan C-P, Kok K-H et al (2014) Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol 11:141–149. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Niemeyer D, Zillinger T, Muth D et al (2013) Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol 87:12489–12495. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang Y, Zhang L, Geng H et al (2013) The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell 4:951–961. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Assiri A, McGeer A, Perl TM et al (2013) Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med 369:407–416. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Assiri A, Al-Tawfiq JA, Al-Rabeeah AA et al (2013) Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13:752–761. CrossRefPubMedGoogle Scholar
  20. 20.
    Lee HKK, Tso EYK, Chau TN et al (2003) Asymptomatic severe acute respiratory syndrome-associated coronavirus infection. Emerg Infect Dis 9:1491–1492CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li G, Zhao Z, Chen L, Zhou Y (2003) Mild severe acute respiratory syndrome. Emerg Infect Dis 9:1182–1183CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lai FW, Stephenson KB, Mahony J, Lichty BD (2014) Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation. J Virol 88:54–65. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhao X, Guo F, Liu F et al (2014) Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proc Natl Acad Sci USA 111:1–6. CrossRefGoogle Scholar
  24. 24.
    Desforges M, Desjardins J, Zhang C, Talbot PJ (2013) The acetyl-esterase activity of the hemagglutinin-esterase protein of human coronavirus OC43 strongly enhances the production of infectious. Virus 87:3097–3107. Google Scholar
  25. 25.
    Lee HK, Tang JWT, Kong DHL, Koay ESC (2013) Simplified large-scale sanger genome sequencing for influenza A/H3N2 Virus. PLoS One. Google Scholar
  26. 26.
    Hatada E, Fukuda R (1992) Binding of influenza A virus NS1 protein to dsRNA in vitro. J Gen Virol 73(Pt 12):3325–3329. CrossRefPubMedGoogle Scholar
  27. 27.
    Bergmann M, Garcia-Sastre A, Carnero E et al (2000) Influenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol 74:6203–6206CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lu Y, Wambach M, Katze MG, Krug RM (1995) Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 214:222–228CrossRefPubMedGoogle Scholar
  29. 29.
    McBride R, Fielding BC (2012) The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. Viruses 4:2902–2923. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zhang R, Wang K, Ping X et al (2015) The ns12.9 accessory protein of human coronavirus OC43 is a viroporin involved in virion morphogenesis and pathogenesis. J Virol 89:11383–11395. CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Koetzner CA, Kuo L, Goebel SJ et al (2010) Accessory protein 5a is a major antagonist of the antiviral action of interferon against murine coronavirus. J Virol 84:8262–8274. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Das KC, Muniyappa H (2010) c-Jun-NH2 terminal kinase (JNK)-mediates AP-1 activation by thioredoxin: phosphorylation of cJun, JunB, and Fra-1. Mol Cell Biochem 337:53–63. CrossRefPubMedGoogle Scholar
  33. 33.
    Krishna M, Narang H (2008) The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell Mol Life Sci 65:3525–3544. CrossRefPubMedGoogle Scholar
  34. 34.
    Locker JK, Rose JK, Horzinek MC, Rottier PJ (1992) Membrane assembly of the triple-spanning coronavirus M protein. Individual transmembrane domains show preferred orientation. J Biol Chem 267:21911–21918PubMedGoogle Scholar
  35. 35.
    Lui P-Y, Wong L-YR, Fung C-L et al (2016) Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3. Emerg Microbes Infect 5:e39. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mak TW, Yeh W-C (2002) Signaling for survival and apoptosis in the immune system. Arthritis Res 4:S243. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Parker MM, Masters PS (1990) Sequence comparison of the N genes of five strains of the coronavirus mouse hepatitis virus suggests a three domain structure for the nucleocapsid protein. Virology 179:463–468CrossRefPubMedGoogle Scholar
  38. 38.
    Kuo L, Masters PS (2002) Genetic evidence for a structural interaction between the carboxy termini of the membrane and nucleocapsid proteins of mouse hepatitis virus. J Virol 76:4987–4999CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yan X, Hao Q, Mu Y et al (2006) Nucleocapsid protein of SARS-CoV activates the expression of cyclooxygenase-2 by binding directly to regulatory elements for nuclear factor-kappa B and CCAAT/enhancer binding protein. Int J Biochem Cell Biol 38:1417–1428. CrossRefPubMedGoogle Scholar
  40. 40.
    Perlman S, Netland J (2009) Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7:439–450. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dai L, Aye Thu C, Liu X-Y et al (2012) TAK1, more than just innate immunity. IUBMB Life 64:825–834. CrossRefPubMedGoogle Scholar
  42. 42.
    Jiang Z, Zamanian-Daryoush M, Nie H et al (2003) Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 278:16713–16719. CrossRefPubMedGoogle Scholar
  43. 43.
    Ogolla PS, Portillo J-AC, White CL et al (2013) The protein kinase double-stranded RNA-dependent (PKR) enhances protection against disease cause by a non-viral pathogen. PLoS Pathog 9:e1003557. CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cheung CY, Poon LLM, Ng IHY et al (2005) Cytokine responses in severe acute respiratory syndrome coronavirus-infected macrophages in vitro: possible relevance to pathogenesis. J Virol 79:7819–7826. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lau SKP, Lau CCY, Chan K-H et al (2013) Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol 94:2679–2690. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology, Faculty of MedicineKuwait UniversitySafatKuwait

Personalised recommendations