Advertisement

Archives of Virology

, Volume 163, Issue 7, pp 1769–1778 | Cite as

Relevance of the N-terminal and major hydrophobic domains of non-structural protein 3A in the replicative process of a DNA-launched foot-and-mouth disease virus replicon

  • Cecilia M. Lotufo
  • Maximiliano Wilda
  • Adrian N. Giraldez
  • Pablo R. Grigera
  • Nora M. Mattion
Original Article

Abstract

A foot-and-mouth disease virus (FMDV) DNA-launched reporter replicon containing a luciferase gene was used to assess the impact of non-structural (NS) protein 3A on viral replication. Independent deletions within the N-terminal region (amino acid [aa] residues 6 to 24) and the central hydrophobic region (HR, aa 59 to 76) of FMDV NS protein 3A were engineered, and luciferase activity in lysates of control and mutated replicon-transfected cells was measured. Triple alanine replacements of the N-terminal triplet Arg 18- His 19 -Glu 20 and a single alanine substitution of the highly charged Glu 20 residue both resulted in a 70-80% reduction in luciferase activity when compared with wild-type controls. Alanine substitution of the 17 aa present in the central HR, on the other hand, resulted in complete inhibition of luciferase activity and in the accumulation of the mutated 3A within the cell nucleus according to immunofluorescence analysis. Our results suggest that both the aa sequence around the putatively exposed hydrophilic E20 residue at the N-terminus of the protein and the hydrophobic tract located between aa 59 and 76 are of major relevance for maintaining the functionality of the 3A protein and preventing its mislocalization into the cell nucleus.

Notes

Acknowledgements

This work was supported by the Fondo Nacional de Ciencia y Tecnología (FONCyT) and Consejo Nacional de Investigaciones Científicas y Tecnológicas of Argentina (CONICET). We are grateful to Dr. Nora Lopez and Dr. Sabrina Foscaldi for providing the pTM1-Renilla plasmid. CL and AG are graduate fellows from CONICET. MW, PRG and NM are at the Scientific Researcher Career in CONICET.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Belsham GJ (1993) Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog Biophys Mol Biol 60(3):241–260CrossRefPubMedGoogle Scholar
  2. 2.
    Forss S, Strebel K, Beck E, Schaller H (1984) Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Res 12(16):6587–6601CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rueckert R (1985) Picornaviruses and their replication. In: Fields B (ed) Virology. Raven press, New YorkGoogle Scholar
  4. 4.
    Beard CW, Mason PW (2000) Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 74(2):987–991CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nunez JI, Molina N, Baranowski E, Domingo E, Clark S, Burman A, Berryman S, Jackson T, Sobrino F (2007) Guinea pig-adapted foot-and-mouth disease virus with altered receptor recognition can productively infect a natural host. J Virol 81(16):8497–8506.  https://doi.org/10.1128/JVI.00340-07 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nunez JI, Baranowski E, Molina N, Ruiz-Jarabo CM, Sanchez C, Domingo E, Sobrino F (2001) A single amino acid substitution in nonstructural protein 3A can mediate adaptation of foot-and-mouth disease virus to the guinea pig. J Virol 75(8):3977–3983.  https://doi.org/10.1128/JVI.75.8.3977-3983.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Gladue DP, O’Donnell V, Baker-Bransetter R, Pacheco JM, Holinka LG, Arzt J, Pauszek S, Fernandez-Sainz I, Fletcher P, Brocchi E, Lu Z, Rodriguez LL, Borca MV (2014) Interaction of foot-and-mouth disease virus nonstructural protein 3A with host protein DCTN3 is important for viral virulence in cattle. J Virol 88(5):2737–2747.  https://doi.org/10.1128/JVI.03059-13 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pacheco JM, Henry TM, O’Donnell VK, Gregory JB, Mason PW (2003) Role of nonstructural proteins 3A and 3B in host range and pathogenicity of foot-and-mouth disease virus. J Virol 77(24):13017–13027CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Moffat K, Howell G, Knox C, Belsham GJ, Monaghan P, Ryan MD, Wileman T (2005) Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 79(7):4382–4395.  https://doi.org/10.1128/JVI.79.7.4382-4395.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gonzalez-Magaldi M, Postigo R, de la Torre BG, Vieira YA, Rodriguez-Pulido M, Lopez-Vinas E, Gomez-Puertas P, Andreu D, Kremer L, Rosas MF, Sobrino F (2012) Mutations that hamper dimerization of foot-and-mouth disease virus 3A protein are detrimental for infectivity. J Virol 86(20):11013–11023.  https://doi.org/10.1128/JVI.00580-12 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Garcia-Briones M, Rosas MF, Gonzalez-Magaldi M, Martin-Acebes MA, Sobrino F, Armas-Portela R (2006) Differential distribution of non-structural proteins of foot-and-mouth disease virus in BHK-21 cells. Virology 349(2):409–421.  https://doi.org/10.1016/j.virol.2006.02.042 CrossRefPubMedGoogle Scholar
  12. 12.
    O’Donnell VK, Pacheco JM, Henry TM, Mason PW (2001) Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 287(1):151–162.  https://doi.org/10.1006/viro.2001.1035 CrossRefPubMedGoogle Scholar
  13. 13.
    Midgley R, Moffat K, Berryman S, Hawes P, Simpson J, Fullen D, Stephens DJ, Burman A, Jackson T (2013) A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection. J Gen Virol 94(Pt 12):2636–2646.  https://doi.org/10.1099/vir.0.055442-0 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gonzalez-Magaldi M, Martin-Acebes MA, Kremer L, Sobrino F (2014) Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A protein. PLoS One 9(9):e106685.  https://doi.org/10.1371/journal.pone.0106685 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Rosas MF, Vieira YA, Postigo R, Martín-Acebes MA, Armas-Portela R, Martínez-Salas E, Sobrino F (2008) Susceptibility to viral infection is enhanced by stable expression of 3A or 3AB proteins from foot-and-mouth disease virus. Virology 380(1):34–45CrossRefPubMedGoogle Scholar
  16. 16.
    Carrillo C, Tulman ER, Delhon G, Lu Z, Carreno A, Vagnozzi A, Kutish GF, Rock DL (2005) Comparative genomics of foot-and-mouth disease virus. J Virol 79(10):6487–6504.  https://doi.org/10.1128/JVI.79.10.6487-6504.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Fry EE, Stuart DI, Rowlands DJ (2005) The structure of foot-and-mouth disease virus. Curr Top Microbiol Immunol 288:71–101PubMedGoogle Scholar
  18. 18.
    Ma XLP, Sun P, Lu Z, Bao H, Bai X, Fu Y, Cao Y, Li D, Chen Y, Qiao Z, Liu Z (2016) Genome sequence of foot-and-mouth disease virus outside the 3A region is also responsible for virus replication in bovine cells. Virus research 220:64–69CrossRefPubMedGoogle Scholar
  19. 19.
    Gao Y, Sun SQ, Guo HC (2016) Biological function of Foot-and-mouth disease virus non-structural proteins and non-coding elements. Virol J 13:107.  https://doi.org/10.1186/s12985-016-0561-z CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Giraldez A (2013) Diseño de un sistema de genética reversa del virus de la fiebre aftosa. Universidad de Buenos AiresGoogle Scholar
  21. 21.
    Tulloch F, Pathania U, Luke GA, Nicholson J, Stonehouse NJ, Rowlands DJ, Jackson T, Tuthill T, Haas J, Lamond AI, Ryan MD (2014) FMDV replicons encoding green fluorescent protein are replication competent. J Virol Methods 209:35–40.  https://doi.org/10.1016/j.jviromet.2014.08.020 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hashimoto-Gotoh T, Tsujimura A, Ogasahara Y (1995) Detection of exonuclease activities in restriction endonuclease preparations using an enforcement plasmid for kanamycin-resistance selection. Gene 164(1):41–44CrossRefPubMedGoogle Scholar
  23. 23.
    Higuchi R, Krummel B, Saiki RK (1988) A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res 16(15):7351–7367CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199CrossRefPubMedGoogle Scholar
  25. 25.
    Foscaldi S, D’Antuono A, Noval MG, de Prat Gay G, Scolaro L, Lopez N (2017) Regulation of tacaribe mammarenavirus translation: positive 5’ and negative 3’ elements, and role of key cellular factors. J Virol.  https://doi.org/10.1128/JVI.00084-17 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Morley SJ, Curtis PS, Pain VM (1997) eIF4G: translation’s mystery factor begins to yield its secrets. RNA 3(10):1085–1104PubMedPubMedCentralGoogle Scholar
  27. 27.
    Belsham GJ, McInerney GM, Ross-Smith N (2000) Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74(1):272–280CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Guarne A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T (1998) Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17(24):7469–7479.  https://doi.org/10.1093/emboj/17.24.7469 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Mason PW, Grubman MJ, Baxt B (2003) Molecular basis of pathogenesis of FMDV. Virus Res 91(1):9–32CrossRefPubMedGoogle Scholar
  30. 30.
    Belsham GJ (2005) Translation and replication of FMDV RNA. Curr Top Microbiol Immunol 288:43–70PubMedGoogle Scholar
  31. 31.
    Steinberger J, Skern T (2014) The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor. Biol Chem 395(10):1179–1185.  https://doi.org/10.1515/hsz-2014-0156 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Capozzo AV, Burke DJ, Fox JW, Bergmann IE, La Torre JL, Grigera PR (2002) Expression of foot and mouth disease virus non-structural polypeptide 3ABC induces histone H3 cleavage in BHK21 cells. Virus Res 90(1–2):91–99CrossRefPubMedGoogle Scholar
  33. 33.
    Egan MJ, Tan K, Reck-Peterson SL (2012) Lis1 is an initiation factor for dynein-driven organelle transport. J Cell Biol 197(7):971–982.  https://doi.org/10.1083/jcb.201112101 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Schwoebel ED, Moore MS (2000) The control of gene expression by regulated nuclear transport. Essays Biochem 36:105–113CrossRefPubMedGoogle Scholar
  35. 35.
    Do HJ, Song H, Yang HM, Kim DK, Kim NH, Kim JH, Cha KY, Chung HM, Kim JH (2006) Identification of multiple nuclear localization signals in murine Elf3, an ETS transcription factor. FEBS Lett 580(7):1865–1871.  https://doi.org/10.1016/j.febslet.2006.02.049 CrossRefPubMedGoogle Scholar
  36. 36.
    Behura M, Mohapatra JK, Pandey LK, Das B, Bhatt M, Subramaniam S, Pattnaik B (2016) The carboxy-terminal half of nonstructural protein 3A is not essential for foot-and-mouth disease virus replication in cultured cell lines. Adv Virol 161(5):1295–1305.  https://doi.org/10.1007/s00705-016-2805-z Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Cecilia M. Lotufo
    • 1
  • Maximiliano Wilda
    • 1
  • Adrian N. Giraldez
    • 1
  • Pablo R. Grigera
    • 1
  • Nora M. Mattion
    • 1
  1. 1.Centro de Virología Animal (CEVAN), Instituto de Ciencia y Tecnología Dr. César MilsteinCONICETCiudad de Buenos AiresArgentina

Personalised recommendations