Archives of Virology

, Volume 163, Issue 6, pp 1567–1576 | Cite as

Detection of the antiviral activity of epicatechin isolated from Salacia crassifolia (Celastraceae) against Mayaro virus based on protein C homology modelling and virtual screening

  • P. G. Ferreira
  • A. C. Ferraz
  • J. E. Figueiredo
  • C. F. Lima
  • V. G. Rodrigues
  • A. G. Taranto
  • J. M. S. Ferreira
  • G. C. Brandão
  • S. A. Vieira-Filho
  • L. P. Duarte
  • C. L. de Brito Magalhães
  • J. C. de Magalhães
Original Article


Mayaro fever, caused by Mayaro virus (MAYV) is a sub-lethal disease with symptoms that are easily confused with those of dengue fever, except for polyarthralgia, which may culminate in physical incapacitation. Recently, outbreaks of MAYV have been documented in metropolitan areas, and to date, there is no therapy or vaccine available. Moreover, there is no information regarding the three-dimensional structure of the viral proteins of MAYV, which is important in the search for antivirals. In this work, we constructed a three-dimensional model of protein C of MAYV by homology modelling, and this was employed in a manner similar to that of receptors in virtual screening studies to evaluate 590 molecules as prospective antiviral agents. In vitro bioassays were utilized to confirm the potential antiviral activity of the flavonoid epicatechin isolated from Salacia crassifolia (Celastraceae). The virtual screening showed that six flavonoids were promising ligands for protein C. The bioassays showed potent antiviral action of epicatechin, which protected the cells from almost all of the effects of viral infection. An effective concentration (EC50) of 0.247 μmol/mL was observed with a selectivity index (SI) of 7. The cytotoxicity assay showed that epicatechin has low toxicity, with a 50% cytotoxic concentration (CC50) greater than 1.723 µmol/mL. Epicatechin was found to be twice as potent as the reference antiviral ribavirin. Furthermore, a replication kinetics assay showed a strong inhibitory effect of epicatechin on MAYV growth, with a reduction of at least four logs in virus production. Our results indicate that epicatechin is a promising candidate for further testing as an antiviral agent against Mayaro virus and other alphaviruses.



We thank Brazilian Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the granting of Scientific Initiation grants. We thank the Universidade Federal de São João del-Rei for granting Master’s degree grants and the facilities to carry out this work.

Funding information

This work was funded by the Brazilian Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) CBBAPQ01028-14.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Supplementary material

705_2018_3774_MOESM1_ESM.pdf (100 kb)
Supplementary material 1 Ligands docked to protein C of the MAYV and their respective binding energies (PDF 99 kb)
705_2018_3774_MOESM2_ESM.pdf (82 kb)
Supplementary material 2 Binding energy of the flavonoids and dioxanes docked to the protein C of the MAYV. *Molecules used as parameters for the evaluation of the binding energies obtained in Virtual Screening study with the Protein C of the MAYV (PDF 82 kb)
705_2018_3774_MOESM3_ESM.pdf (224 kb)
Supplementary material 3 NMR spectrum of epicatechin from the extract of ethyl acetate from leaves of Salacia crassifolia. (a) 1H NMR (CD3OD, 400 MHz). (b) 13C NMR (CD3OD, 100 MHz) and the chemical structure of epicatechin (PDF 224 kb)


  1. 1.
    Vieira CJ, Silva DJ, Barreto ES, Siqueira CE, Colombo TE et al (2015) Detection of Mayaro virus infections during a dengue outbreak in Mato Grosso, Brazil. Acta Trop 147:12–16CrossRefPubMedGoogle Scholar
  2. 2.
    Vasconcelos PFC, Da Travassos Rosa APA, Pinheiro FP, Shope RE, da Travassos Rosa JFS et al (1998) Arboviruses pathogenic for man in Brazil. In: da Travassos Rosa APA, Vasconcelos PFC, Da Travassos Rosa JFS (eds) An overview of arbovirology in Brazil and neighbouring countries. Instituto Evandro Chagas, Belém, pp 72–99Google Scholar
  3. 3.
    Coimbra TLM, Santos CLS, Suzuki A, Petrella SMC, Bisordi I et al (2007) Mayaro virus: imported cases of human infection in São Paulo state, Brazil. Rev Inst Med Trop São Paulo 49:221–224CrossRefPubMedGoogle Scholar
  4. 4.
    Long KC, Ziegler SA, Thangamani S, Hausser NL, Kochel TJ et al (2011) Experimental transmission of Mayaro virus by Aedes aegypti. Am J Trop Med Hyg 85:750–757CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mourão MP, Bastos Mde S, de Figueiredo RP, Gimaque JB, Galusso Edos S et al (2012) Mayaro fever in the city of Manaus, Brazil, 2007–2008. Vector Borne Zoonotic Dis 12:42–46CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Forshey BM, Guevara C, Laguna-Torres VA, Cespedes M, Vargas J et al (2010) Arboviral etiologies of acute febrile illnesses in western South America, 2000–2007. PLoS Negl Trop Dis. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pinheiro FP, Freitas RB, Travassos da Rosa JF, Gabbay YB, Mello WA et al (2010) An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am J Trop Med Hyg 30:674–681CrossRefGoogle Scholar
  8. 8.
    Halsey ES, Siles C, Guevara C, Vilcarromero S, Jhonston EJ et al (2013) Mayaro virus infection, Amazon Basin region, Peru, 2010–2013. Emerg Infect Dis 19:1839–1842CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suhrbier A, Mahalingam S (2009) The immunobiology of viral arthritides. Pharmacol Ther 124:301–308CrossRefPubMedGoogle Scholar
  10. 10.
    Figueiredo MLG, Figueiredo LTM (2014) Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop 47:677–683CrossRefPubMedGoogle Scholar
  11. 11.
    Santiago FW, Halsey ES, Siles C, Vilcarromero S, Guevara C et al (2015) Long-term arthralgia after Mayaro virus infection correlates with sustained pro-inflammatory cytokine response. PLoS Negl Trop Dis. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lavergne A, de Thoisy B, Lacoste V, Pascalis H, Pouliquen JF et al (2006) Mayaro virus: complete nucleotide sequence and phylogenetic relationships with other alphaviruses. Virus Res 117:283–290CrossRefPubMedGoogle Scholar
  13. 13.
    Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562PubMedPubMedCentralGoogle Scholar
  14. 14.
    Firth AE, Chung BYW, Fleeton MN, Atkins JF (2008) Discovery of frameshifting in alphavirus 6K resolves a 20-year enigma. Virol J. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Snyder JE, Kulcsar KA, Schultz KLW, Riley CP, Neary JT et al (2013) Functional characterization of the alphavirus TF protein. J Virol 87:8511–8523CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gaspar LP, Terezan AF, Pinheiro AS, Foquel D, Rebello MA et al (2001) The metastable state of nucleocapsids of enveloped viruses as probed by high hydrostatic pressure. J Biol Chem 276:7415–7421CrossRefPubMedGoogle Scholar
  17. 17.
    Napoleão-Pego P, Gomes LP, Provance DW, De Simone SG (2014) Mayaro virus disease. J Hum Virol Retrovirol. CrossRefGoogle Scholar
  18. 18.
    Cheng RH, Kuhn RJ, Olson NH, Rossmann MG, Choi HK et al (1995) Nucleocapsid and glycoprotein organization in an enveloped virus. Cell 80:621–630CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Choi HK, Tong L, Minor W, Dumas P, Boege U et al (1991) Structure of Sindbis virus core protein reveals a chymotrypsin-like serine proteinase and the organization of the virion. Nature 354:37–43CrossRefPubMedGoogle Scholar
  20. 20.
    Choi HK, Lu G, Lee S, Wengler G, Rossmann MG (1997) Structure of Semliki Forest virus core protein. Proteins Struct Funct Genet 27:345–359CrossRefPubMedGoogle Scholar
  21. 21.
    Rodrigues VG, Duarte LP, Silva RR, Silva GDF, Mercadante-Simões MO et al (2015) Salacia crassifolia (Celastraceae): chemical constituents and antimicrobial activity. Quim Nova 38:237–242Google Scholar
  22. 22.
    National Center for Biotechnology Information (NCBI) (2015) Accessed 21 Jul 2015
  23. 23.
    Aggarwal M, Tapas S, Preeti Siwach A, Kumar P et al (2012) Crystal structure of aura virus capsid protease and its complex with dioxane: new insights into capsid-glycoprotein molecular contacts. PLoS One. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Guex N, Peitsch MC (1997) SWISS-MODEL and the SwissPdb Viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefPubMedGoogle Scholar
  25. 25.
    Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM et al (2003) Structure validation by Calpha geometry: phi, psi and Cbeta deviation. Proteins 50:437–450CrossRefPubMedGoogle Scholar
  26. 26.
    Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27:343–350CrossRefPubMedGoogle Scholar
  27. 27.
    Maia EHB, Campos VA, Dos Reis Santos B, Costa MS, Lima IG, Greco SJ, Ribeiro RIMA, Munayer FM, Da Silva AM, Taranto AG (2017) Octopus: a platform for the virtual high-throughput screening of a pool of compounds against a set of molecular targets. J Mol Model 23:23–26CrossRefGoogle Scholar
  28. 28.
    Zinc12 (2015) Accessed 17 Nov 2015
  29. 29.
    Chemaxon (2015) MarvinSketch, an advanced chemical editor for drawing chemical structures, queries and reactions. Accessed 19 Nov 2015
  30. 30.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK et al (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791CrossRefGoogle Scholar
  31. 31.
    Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodrigues VG (2015) Estudo fitoquímico, biológico e de atividades antioxidante e inibitória da acetilcolinesterase de Salacia crassifolia e Maytenus imbricata. Universidade Federal de Minas Gerais, TeseGoogle Scholar
  33. 33.
    Dulbecco R (1952) Production of plaques in monolayer tissue cultures by single particles of an animal virus. Proc Natl Acad Sci USA 38:747–752CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  35. 35.
    Pearson WR (2013) An introduction to sequence similarity (“Homology”) searching. Curr Protoc Bioinform. CrossRefGoogle Scholar
  36. 36.
    Vyas VK, Ukawala RD, Ghate M, Chintha C (2012) Homology modeling a fast tool for drug discovery: current perspectives. Indian J Pharm Sci 74:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Brozell SR, Mukherjee S, Balius TE, Roe DR, Case DA et al (2012) Evaluation of DOCK 6 as a pose generation and database enrichment tool. J Comput Aided Mol Des 26:749–773CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Kim YH, Patkar C, Warrier R, Kuhn R, Cushman M (2005) Design, synthesis, and evaluation of dioxane-based antiviral agents targeted against the Sindbis virus capsid protein. Bioorg Med Chem Lett 15:3207–3211CrossRefPubMedGoogle Scholar
  39. 39.
    Takeda-Shitaka M, Takaya D, Chiba C, Tanaka H, Umeyama H (2004) Protein structure prediction in structure based drug design. Curr Med Chem 11:551–558CrossRefPubMedGoogle Scholar
  40. 40.
    Lee S, Kuhn RJ, Rossmann MG (1998) Probing the potential glycoprotein binding site of Sindbis virus capsid protein with dioxane and model building. Proteins 33:311–317CrossRefPubMedGoogle Scholar
  41. 41.
    Sánchez I, Gómez Garibay F, Taboada J, Ruiz BH (2000) Antiviral effect of flavonoids on the dengue virus. Phytother Res 14:89–92CrossRefPubMedGoogle Scholar
  42. 42.
    Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR (2011) Antiviral activity of four types of bioflavonoid against dengue virus type-2. Virol J. PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR (2011) In vitro antiviral activity of fisetin, rutin and naringenin against Dengue virus type-2. J Med Plant Res 5:5534–5539Google Scholar
  44. 44.
    Allard PM, Dau ET, Eydoux C, Guillemot JC, Dumontet V et al (2011) Alkylated flavanones from the bark of Cryptocarya chartacea as dengue virus NS5 polymerase inhibitors. J Nat Prod 11:2446–2453CrossRefGoogle Scholar
  45. 45.
    Frabasile S, Koishi AC, Kuczera D, Silveira GF, Verri WA Jr et al (2017) The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci Rep. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lin SC, Chen MC, Li S, Lin CC, Wang TT (2017) Antiviral activity of nobiletin against chikungunya virus in vitro. Antivir Ther. PubMedCrossRefGoogle Scholar
  47. 47.
    Calland N, Albecka A, Belouzard S, Wychowski C, Duverlie G et al (2012) (−)-Epigallocatechin-3-gallate is a new inhibitor of hepatitis C virus entry. Hepatology 55:720–729CrossRefPubMedGoogle Scholar
  48. 48.
    Grienke U, Richter M, Walther E, Hoffmann A, Kirchmair J et al (2016) Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae. Sci Rep. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Kuzuhara T, Iwai Y, Takahashi H, Hatakeyama D, Echigo N (2009) Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr. PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kim M, Kim SY, Lee HW, Shin JS, Kim P et al (2013) Inhibition of influenza virus internalization by (−)-epigallocatechin-3-gallate. Antiviral Res 100:460–472CrossRefPubMedGoogle Scholar
  51. 51.
    Goldwasser J, Cohen PY, Lin W, Kitsberg D, Balaquer P et al (2011) Naringenin inhibits the assembly and long-term production of infectious hepatitis C virus particles through a PPAR-mediated mechanism. J Hepatol 55:963–971CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Tsukuda S, Watashi K, Hojima T, Isogawa M, Iwamoto M et al (2017) A new class of Hepatitis B and D Virus entry inhibitors, Proanthocyanidin and its analogs, that directly act on the viral large surface proteins. Hepatology 65:1104–1116CrossRefPubMedGoogle Scholar
  53. 53.
    Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M et al (2009) Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem 284:21165–21176CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bézivin C, Tomasi S, Lohézic-Le Dévéhat F, Boustie J (2003) Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 10:499–503CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • P. G. Ferreira
    • 1
  • A. C. Ferraz
    • 2
  • J. E. Figueiredo
    • 1
  • C. F. Lima
    • 1
  • V. G. Rodrigues
    • 4
    • 6
  • A. G. Taranto
    • 2
  • J. M. S. Ferreira
    • 2
  • G. C. Brandão
    • 3
  • S. A. Vieira-Filho
    • 3
    • 6
  • L. P. Duarte
    • 4
    • 6
  • C. L. de Brito Magalhães
    • 5
  • J. C. de Magalhães
    • 1
    • 6
  1. 1.Departamento de Química, Biotecnologia e Engenharia de BioprocessosUniversidade Federal de São João del-ReiOuro BrancoBrazil
  2. 2.Universidade Federal de São João del-ReiDivinópolisBrazil
  3. 3.Departamento de Farmácia, Escola de FarmáciaUniversidade Federal de Ouro PretoOuro PretoBrazil
  4. 4.Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  5. 5.Departamento de Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas/NUPEBUniversidade Federal de Ouro PretoOuro PretoBrazil
  6. 6.Núcleo de Estudos em Plantas Medicinais, NEPLAM, Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations