Skip to main content

Advertisement

Log in

Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Dengue fever is one of the most common viral infections in the world. Although a vaccine against dengue virus (DENV) has been approved in several countries, this disease is still considered a public health priority worldwide. The ability of three small interfering RNAs (FG-siRNAs) targeting conserved sequences in the NS4B and NS5 regions of the DENV genome to inhibit DENV replication was tested in vitro in both Vero and C6/36 cells. The FG-siRNAs were effective against DENV-1, -3, and -4, but not DENV-2. A fourth siRNA specifically targeting the NS5 region of the DENV-2 genome (SG-siRNA) was designed and tested against two different DENV-2 strains, showing high levels of inhibition in both mammalian and insect cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Rodenhuis-Zybert IA, Wilschut J, Smit JM (2010) Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 16:2773–2786

    Article  Google Scholar 

  2. Simmonds P, Becher P, Bukh J, Gould EA, Meyers G, Monath T, Muerhoff S, Pletnev A, Rico-Hesse R, Smith DB, Stapleton JT, Ictv Report Consortium (2017) ICTV virus taxonomy profile: flaviviridae. J Gen Virol 1:2–3

    Google Scholar 

  3. Henchal EA, Putnak JR (1990) The dengue viruses. Clin Microbiol Rev 4:376–396

    Article  Google Scholar 

  4. Brady OJ, Gething PW, Bhatt S, Messina JP, Brownstein JS, Hoen AG, Moyes CL, Farlow AW, Scott TW, Hay SI (2012) Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis 8:e1760

    Article  Google Scholar 

  5. Screaton G, Mongkolsapaya J (2017) Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination? The challenges of a dengue vaccine. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a029520

    PubMed  Google Scholar 

  6. Weaver SC, Charlier C, Vasilakis N, Lecuit M (2017) Zika, Chikungunya, and other emerging vector-borne viral diseases. Annu Rev Med. https://doi.org/10.1146/annurev-med-050715-105122

    PubMed  Google Scholar 

  7. Maciel-de-Freitas R, Avendanho FC, Santos R, Sylvestre G, Araújo SC, Lima JB, Martins AJ, Coelho GE, Valle D (2014) Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS One 3:e92424

    Article  Google Scholar 

  8. Corbel V, Fonseca DM, Weetman D, Pinto J, Achee NL, Chandre F, Coulibaly MB, Dusfour I, Grieco J, Juntarajumnong W, Lenhart A, Martins AJ, Moyes C, Ng LC, Raghavendra K, Vatandoost H, Vontas J, Muller P, Kasai S, Fouque F, Velayudhan R, Durot C, David JP (2016) International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasit Vectors 1:278

    Google Scholar 

  9. Massonnet-Bruneel B, Corre-Catelin N, Lacroix R, Lees RS, Hoang KP, Nimmo D, Alphey L, Reiter P (2013) Fitness of transgenic mosquito Aedes aegypti males carrying a dominant lethal genetic system. PLoS One 5:e62711

    Article  Google Scholar 

  10. Airs PM, Bartholomay LC (2017) RNA interference for mosquito and mosquito-borne disease control. Insects 8(1):4

    Article  PubMed Central  Google Scholar 

  11. Blair CD, Olson KE (2015) The role of RNA interference (RNAi) in arbovirus-vector interactions. Viruses 2:820–843

    Article  Google Scholar 

  12. Franz AW, Sanchez-Vargas I, Raban RR, Black WC 4th, James AA, Olson KE (2014) Fitness impact and stability of a transgene conferring resistance to dengue-2 virus following introgression into a genetically diverse Aedes aegypti strain. PLoS Negl Trop Dis 5:e2833

    Article  Google Scholar 

  13. Villegas-Rosales PM, Méndez-Tenorio A, Ortega-Soto E, Barrón BL (2012) Bioinformatics prediction of siRNAs as potential antiviral agents against dengue viruses. Bioinformation 11:519–522

    Article  Google Scholar 

  14. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, Chua KB (2007) Evaluation of a commercial dengue NS1 antigen-capture ELISA for laboratory diagnosis of acute dengue virus infection. J Virol Methods 1–2:75–79

    Article  Google Scholar 

  15. Bessoff K, Phoutrides E, Delorey M, Acosta LN, Hunsperger E (2010) Utility of a commercial nonstructural protein 1 antigen capture kit as a dengue virus diagnostic tool. Clin Vaccine Immunol 6:949–953

    Article  Google Scholar 

  16. Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S, Zaremba S, Gu Z, Zhou L, Larson CN, Dietrich J, Klem EB, Scheuermann RH (2011) ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40(D1):D593–D598

    Article  PubMed  PubMed Central  Google Scholar 

  17. Qureshi A, Thakur N, Kumar M (2013) VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses. J Transl Med 11:305

    Article  PubMed  PubMed Central  Google Scholar 

  18. Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 3:326–330

    Article  Google Scholar 

  19. Garmann RF, Gopal A, Athavale SS, Knobler CM, Gelbart WM, Harvey SC (2015) Visualizing the global secondary structure of a viral RNA genome with cryo-electron microscopy. RNA 21(5):877–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sükösd Z, Andersen ES, Seemann SE, Jensen MK, Hansen M, Gorodkin J, Kjems J (2015) Full-length RNA structure prediction of the HIV-1 genome reveals a core domain. Nucleic Acids Res 43(21):10168–10179

    PubMed  PubMed Central  Google Scholar 

  21. Davis M, Sagan SM, Pezacki JP, Evans DJ, Simmonds P (2008) Bioinformatic and physical characterizations of genome-scale ordered RNA structure in mammalian RNA viruses. J Virol 23:11824–11836

    Article  Google Scholar 

  22. Thurner C, Witwer C, Hofacker IL, Stadler PF (2004) Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85(5):1113–1124

    Article  CAS  PubMed  Google Scholar 

  23. Gruber AR, Lorenz R, Bernhart SH, Neuböck R, Hofacker IL (2008) The Vienna RNA websuite. Nucleic Acids Res 36(suppl_2):W70–W74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Markham NR, Zuker M (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res 33(suppl_2):W577–W581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. El Sahili A, Lescar J (2017) Dengue virus non-structural protein 5. Viruses 9(4):91. https://doi.org/10.3390/v9040091

    Article  PubMed Central  Google Scholar 

  26. Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE (2017) The 5′ and 3′ untranslated regions of the flaviviral genome. Viruses 9(6):137. https://doi.org/10.3390/v9060137

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Juan Salas (ENMH-IPN) for kindly donating DENV-1, 2, 3 and 4 reference strains, Dr. Maria Isabel Salazar (ENCB-IPN) for providing the DENV-2 Yucatan 17438 strain, and Dr. Alfonso Méndez Tenorio (ENCB-IPN) for his support in the thermodynamic analyses.

Funding

This project was supported by Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional (20160619). VPM has a fellowship from CONACyT, Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Torres-Flores.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villegas, P.M., Ortega, E., Villa-Tanaca, L. et al. Inhibition of dengue virus infection by small interfering RNAs that target highly conserved sequences in the NS4B or NS5 coding regions. Arch Virol 163, 1331–1335 (2018). https://doi.org/10.1007/s00705-018-3757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3757-2

Keywords

Navigation