Archives of Virology

, Volume 163, Issue 5, pp 1337–1343 | Cite as

Comparative genomic analysis of novel bacteriophages infecting Vibrio parahaemolyticus isolated from western and southern coastal areas of Korea

  • Junhyeok Yu
  • Jeong-A Lim
  • Su-Jin Kwak
  • Jong-Hyun Park
  • Hyun-Joo Chang
Brief Report

Abstract

Vibrio parahaemolyticus, a foodborne pathogen, has become resistant to antibiotics. Therefore, alternative bio-control agents such bacteriophage are urgently needed for its control. Six novel bacteriophages specific to V. parahaemolyticus (vB_VpaP_KF1~2, vB_VpaS_KF3~6) were characterized at the molecular level in this study. Genomic similarity analysis revealed that these six bacteriophages could be divided into two groups with different genomic features, phylogenetic grouping, and morphologies. Two groups of bacteriophages had their own genes with different mechanisms for infection, assembly, and metabolism. Our results could be used as a future reference to study phage genomics or apply phages in future bio-control studies.

Keywords

Vibrio parahaemolyticus bacteriophage comparative analysis genomic similarity phylogenetic tree 

Notes

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

705_2018_3756_MOESM1_ESM.pdf (407 kb)
Supplementary material 1 (pdf 407 kb)
705_2018_3756_MOESM2_ESM.pdf (14 kb)
Supplementary material 2 (pdf 14 kb)
705_2018_3756_MOESM3_ESM.xlsx (37 kb)
Supplementary material 2 (xlsx 37 kb)
705_2018_3756_MOESM4_ESM.pdf (16 kb)
Supplementary material 2 (pdf 17 kb)
705_2018_3756_MOESM5_ESM.pdf (16 kb)
Supplementary material 2 (pdf 17 kb)

References

  1. 1.
    Bao H, Zhang P, Zhang H, Zhou Y, Zhang L, Wang R (2015) Bio-control of Salmonella enteritidis in foods using bacteriophages. Viruses 7:4836–4853CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bastías R, Higuera G, Sierralta W, Espejo RT (2010) A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus. Environ Microbiol 12:990–1000CrossRefPubMedGoogle Scholar
  3. 3.
    Carlson K (2005) Working with bacteriophages: common techniques and methodological approaches. In: Kutter E, Sula- Kvelidze A (eds) Bacteriophages: biology and application. CRC Press, Boca Raton, pp 437–494Google Scholar
  4. 4.
    CDC (2013) Antibiotic resistance threats in the United States, 2013. Current 114. pp 5–6. Doi: CS239559-Bhttps://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
  5. 5.
    Centers for Disease Control and Prevention (2013) Vibrio Illness (Vibriosis): Vibrio parahaemolyticus. http://www.cdc.gov/vibrio/vibriop.html. Accessed 14 May 2017
  6. 6.
    Chang H-J, Hong J, Lee N, Chun HS, Kim HY, Choi S-W, Ok G (2016) Growth inhibitory effect of bacteriophages isolated from western and southern coastal areas of Korea against Vibrio parahaemolyticus in Manila clams. Appl Biol Chem 59:359–365CrossRefGoogle Scholar
  7. 7.
    Elmahdi S, DaSilva LV, Parveen S (2016) Antibiotic resistance of Vibrio parahaemolyticus and Vibrio vulnificus in various countries: a review. Food Microbiol 57:128–134CrossRefPubMedGoogle Scholar
  8. 8.
    Han F, Walker RD, Janes ME, Prinyawiwatkul W, Ge B (2007) Antimicrobial susceptibilities of Vibrio parahaemolyticus and Vibrio vulnificus isolates from Louisiana Gulf and retail raw oysters. Appl Environ Microbiol 73:7096–7098CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Hardies SC, Thomas JA, Black L, Weintraub ST, Hwang CY, Cho BC (2016) Identification of structural and morphogenesis genes of Pseudoalteromonas phage φRIO-1 and placement within the evolutionary history of Podoviridae. Virology 489:116–127CrossRefPubMedGoogle Scholar
  10. 10.
    Isidro A, Henriques AO, Tavares P (2004) The portal protein plays essential roles at different steps of the SPP1 DNA packaging process. Virology 322:253–263CrossRefPubMedGoogle Scholar
  11. 11.
    Kemp P, Garcia LR, Molineux IJ (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology 340:307–317CrossRefPubMedGoogle Scholar
  12. 12.
    Khan Shawan MMA, Hasan MA, Hossain MM, Hasan MM, Parvin A, Akter S, Uddin KR, Banik S, Morshed M, Rahman MN, Rahman SMB (2016) Genomics dataset on unclassified published organism (patent US 7547531). Data Br 9:602–605.  https://doi.org/10.1016/j.dib.2016.09.046 CrossRefGoogle Scholar
  13. 13.
    Kropinski AM, Prangishvili D, Lavigne R (2009) Position paper: The creation of a rational scheme for the nomenclature of viruses of bacteria and archaea. Environ Microbiol 11:2775–2777CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinf 9:299–306CrossRefGoogle Scholar
  15. 15.
    Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  16. 16.
    Lee HS, Choi S, Choi SH (2012) Complete genome sequence of Vibrio vulnificus bacteriophage SSP002. J Virol 86:1–2CrossRefGoogle Scholar
  17. 17.
    Letchumanan V, Chan KG, Pusparajah P, Saokaew S, Duangjai A, Goh BH, Ab Mutalib NS, Lee LH (2016) Insights into bacteriophage application in controlling vibrio species. Front Microbiol 7:1114PubMedPubMedCentralGoogle Scholar
  18. 18.
    Letchumanan V, Yin WF, Lee LH, Chan KG (2015) Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia. Front Microbiol 6:33PubMedPubMedCentralGoogle Scholar
  19. 19.
    Li H, Tang R, Lou Y, Cui Z, Chen W, Hong Q, Zhang Z, Malakar PK, Pan Y, Zhao Y (2017) A comprehensive epidemiological research for clinical Vibrio parahaemolyticus in Shanghai. Front Microbiol 8:1043CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lowe TM, Eddy SR (1996) TRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefGoogle Scholar
  21. 21.
    Mahony J, Alqarni M, Stockdale S, Spinelli S, Feyereisen M, Cambillau C, Sinderen DV (2016) Functional and structural dissection of the tape measure protein of lactococcal phage TP901-1. Sci Rep 6:36667CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    National Center for Biotechnology Information (NCBI) Genome database https://www.ncbi.nlm.nih.gov/genome. Accessed 4 Sep 2017
  23. 23.
    Peng F, Mi Z, Huang Y, Yuan X, Niu W, Wang Y, Hua Y, Fan H, Bai C, Tong Y (2014) Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol 14:181CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stacy MC, Martha I, Jennifer YH, Patricia MG, Debra G, Alicia BC, Matthew C, Melissa TA, David B, Kirk S, Sarah L, Shelley Z, Paul RC, John D, Kristin GH, Susan L, Robert T, Olga LH (2014) Incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveillance network, 10 U.S. sites, 2006-2013. MMWR 63(15):328–332Google Scholar
  25. 25.
    Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    U.S Food and Drug Administration (FDA) Foodborne Illnesses: What You Need to Know. https://www.fda.gov/Food/FoodborneIllnessContaminants/FoodborneIllnessesNeedToKnow/default.htm. Accessed 1 Feb 2017
  27. 27.
    Villa AA, Kropinski AM, Abbasifar R, Griffiths MW (2012) Complete genome sequence of Vibrio parahaemolyticus bacteriophage vB_VpaM_MAR. J Virol 86:13138–13139CrossRefGoogle Scholar
  28. 28.
    Wang W, Li M, Lin H, Wang J, Mao X (2016) The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol 161:2645–2652CrossRefPubMedGoogle Scholar
  29. 29.
    Yang H, Ma Y, Wang Y, Yang H, Shen W, Chen X (2014) Transcription regulation mechanisms of bacteriophages: Recent advances and future prospects. Bioengineered 5:300–304CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Zanetti S, Spanu T, Deriu A, Romano L, Sechi LA, Fadda G (2001) In vitro susceptibility of Vibrio spp. isolated from the environment. Int J Antimicrob Agents 17:407–409CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Junhyeok Yu
    • 1
    • 2
  • Jeong-A Lim
    • 1
  • Su-Jin Kwak
    • 1
  • Jong-Hyun Park
    • 2
  • Hyun-Joo Chang
    • 1
    • 3
  1. 1.Food Safety Research GroupKorea Food Research InstituteWanju-gunRepublic of Korea
  2. 2.Department of Food and BiotechnologyGachon UniversitySungnamRepublic of Korea
  3. 3.Center for Convergent Research of Emerging Virus InfectionKorea Research Institute of Chemical TechnologyDaejeonRepublic of Korea

Personalised recommendations