Archives of Virology

, Volume 163, Issue 5, pp 1219–1230 | Cite as

Genetic characterization and diversity of circulating influenza A/H1N1pdm09 viruses isolated in Jeddah, Saudi Arabia between 2014 and 2015

  • Anwar M. Hashem
  • Esam I. Azhar
  • Sarah Shalhoub
  • Turki S. Abujamel
  • Norah A. Othman
  • Abdulwahab B. Al Zahrani
  • Hanan M. Abdullah
  • Maha M. Al-Alawi
  • Anees A. Sindi
Original Article


The emerged influenza A/H1N1pdm09 viruses have replaced the previously circulating seasonal H1N1 viruses. The close antigenic properties of these viruses to the 1918 H1N1 pandemic viruses and their post-pandemic evolution pattern could further enhance their adaptation and pathogenicity in humans representing a major public health threat. Given that data on the dynamics and evolution of these viruses in Saudi Arabia is sparse we investigated the genetic diversity of circulating influenza A/H1N1pdm09 viruses from Jeddah, Saudi Arabia, by analyzing 39 full genomes from isolates obtained between 2014-2015, from patients with varying symptoms. Phylogenetic analysis of all gene segments and concatenated genomes showed similar topologies and co-circulation of clades 6b, 6b.1 and 6b.2, with clade 6b.1 being the most predominate since 2015. Most viruses were more closely related to the vaccine strain (Michigan/45/2015) recommended for the 2017/2018 season, than to the California/07/2009 strain. Low sequence variability was observed in the haemagglutinin protein compared to the neuraminidase protein. Resistance to neuraminidase inhibitors was limited as only one isolate had the H275Y substitution. Interestingly, two isolates had short PA-X proteins of 206 amino acids compared to the 232 amino acid protein found in most influenza A/H1N1pdm09 viruses. Together, the co-circulation of several clades and the predominance of clade 6b.1, despite its low circulation in Asia in 2015, suggests multiple introductions most probably during the mass gathering events of Hajj and Umrah. Jeddah represents the main port of entry to the holy cities of Makkah and Al-Madinah, emphasizing the need for vigilant surveillance in the kingdom.



This study was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University (KAU), Jeddah, under grant no. (G-484-140-37). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

705_2018_3732_MOESM1_ESM.xlsx (60 kb)
S1 Table. Detailed amino acid changes in the influenza A/H1N1pdm09 isolates (XLSX 59 kb)


  1. 1.
    Medina RA, García-Sastre A (2011) Influenza A viruses: new research developments. Nat Rev Microbiol 9:590–603CrossRefPubMedGoogle Scholar
  2. 2.
    Nguyen-Van-Tam JS, Hampson AW (2003) The epidemiology and clinical impact of pandemic influenza. Vaccine 21:1762–1768CrossRefPubMedGoogle Scholar
  3. 3.
    World Health Organization (WHO). Influenza (Seasonal) Fact sheet November 2016. Accessed 15 Nov 2017
  4. 4.
    Lui KJ, Kendal AP (1987) Impact of influenza epidemics on mortality in the United States from October 1972 to May 1985. Am J Public Health 77:712–716CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tong S, Zhu X, Li Y et al (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9:e1003657CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hay AJ, Gregory V, Douglas AR et al (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Martinez O, Tsibane T, Basler CF (2009) Neutralizing anti-influenza virus monoclonal antibodies: therapeutics and tools for discovery. Int Rev Immunol 28:69–92CrossRefPubMedGoogle Scholar
  8. 8.
    Schäfer JR, Kawaoka Y, Bean WJ et al (1993) Origin of the pandemic 1957 H2 influenza A virus and the persistence of its possible progenitors in the avian reservoir. Virology 194:781–788CrossRefPubMedGoogle Scholar
  9. 9.
    Webby RJ, Webster RG (2001) Emergence of influenza A viruses. Philos Trans R Soc Lond B Biol Sci 356:1817–1828CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Garten RJ, Davis CT, Russell CA et al (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197–201CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Itoh Y, Shinya K, Kiso M et al (2009) In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 460:1021–1025CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Miller MA, Viboud C, Balinska M et al (2009) The signature features of influenza pandemics—implications for policy. N Engl J Med 360:2595–2598CrossRefPubMedGoogle Scholar
  13. 13.
    Smith GJ, Vijaykrishna D, Bahl J et al (2009) Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1125CrossRefPubMedGoogle Scholar
  14. 14.
    Pan C, Cheung B, Tan S et al (2010) Genomic signature and mutation trend analysis of pandemic (H1N1) 2009 influenza A virus. PLoS One 5:e9549CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cutler J, Schleihauf E, Hatchette TF et al (2009) Investigation of the first cases of human-to-human infection with the new swine-origin influenza A (H1N1) virus in Canada. CMAJ 181:159–163CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fisman DN, Savage R, Gubbay J et al (2009) Older age and a reduced likelihood of 2009 H1N1 virus infection. N Engl J Med 361:2000–2001CrossRefPubMedGoogle Scholar
  17. 17.
    Hancock K, Veguilla V, Lu X et al (2009) Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med 361:1945–1952CrossRefPubMedGoogle Scholar
  18. 18.
    Dorigatti I, Cauchemez S, Ferguson NM (2013) Increased transmissibility explains the third wave of infection by the 2009 H1N1 pandemic virus in England. Proc Natl Acad Sci USA 110:13422–13427CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Otte A, Sauter M, Daxer MA et al (2015) Adaptive mutations that occurred during circulation in humans of H1N1 influenza virus in the 2009 pandemic enhance virulence in mice. J Virol 89:7329–7337CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Dong G, Peng C, Luo J et al (2015) Adamantane-resistant influenza A viruses in the world (1902–2013): frequency and distribution of M2 gene mutations. PLoS One 10:e0119115CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Cobbin JCA, Alfelali M, Barasheed O et al (2017) Multiple sources of genetic diversity of influenza A viruses during the Hajj. J Virol 91:e00096-17CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Benkouiten S, Charrel R, Belhouchat K et al (2014) Respiratory viruses and bacteria among pilgrims during the 2013 Hajj. Emerg Infect Dis 20:1821–1827CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Memish ZA, Assiri A, Turkestani A et al (2015) Mass gathering and globalization of respiratory pathogens during the 2013 Hajj. Clin Microbiol Infect 21:571.e571–571.e578Google Scholar
  24. 24.
    Tolah AM, Azhar EI, Hashem AM (2016) Susceptibility of influenza viruses circulating in Western Saudi Arabia to neuraminidase inhibitors. Saudi Med J 37:461–465CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    World Health Organization (WHO) Sequencing primers WHO protocol. Accessed 15 Nov 2017
  26. 26.
    Al-Saeed MS, El-Kafrawy SA, Farraj SA et al (2017) Phylogenetic characterization of circulating Dengue and Alkhumra Hemorrhagic Fever viruses in western Saudi Arabia and lack of evidence of Zika virus in the region: a retrospective study, 2010–2015. J Med Virol 89:1339–1346CrossRefPubMedGoogle Scholar
  27. 27.
    Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tamura K, Stecher G, Peterson D et al (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Mol Biol Evol 9:678–687PubMedGoogle Scholar
  31. 31.
    Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  32. 32.
    Hasegawa M, Kishino H, Yano T (1985) Dating the human-ape split by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174CrossRefPubMedGoogle Scholar
  33. 33.
    Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  34. 34.
    Houng HS, Garner J, Zhou Y et al (2012) Emergent 2009 influenza A(H1N1) viruses containing HA D222N mutation associated with severe clinical outcomes in the Americas. J Clin Virol 53:12–15CrossRefPubMedGoogle Scholar
  35. 35.
    Nguyen HK, Nguyen PT, Nguyen TC et al (2015) Virological characterization of influenza H1N1pdm09 in Vietnam, 2010–2013. Influenza Other Respir Viruses 9:216–224CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Parida M, Dash PK, Kumar JS et al (2016) Emergence of influenza A(H1N1)pdm09 genogroup 6B and drug resistant virus, India, January to May 2015. Euro Surveill 21:6–11CrossRefPubMedGoogle Scholar
  37. 37.
    Wedde M, Biere B, Wolff T et al (2015) Evolution of the hemagglutinin expressed by human influenza A(H1N1)pdm09 and A(H3N2) viruses circulating between 2008–2009 and 2013–2014 in Germany. Int J Med Microbiol 305:762–775CrossRefPubMedGoogle Scholar
  38. 38.
    European Centre for Disease Prevention and Control. Influenza virus characterisation, summary Europe, November 2015. Stockholm: ECDC; 2015. Accessed 15 Nov 2017
  39. 39.
  40. 40.
  41. 41.
    World Health Organization (WHO). Recommended composition of influenza virus vaccines for use in the 2017 southern hemisphere influenza season. Available from: Accessed 15 Nov 2017
  42. 42.
    Broberg E, Melidou A, Prosenc K et al (2016) Predominance of influenza A(H1N1)pdm09 virus genetic subclade 6B.1 and influenza B/Victoria lineage viruses at the start of the 2015/16 influenza season in Europe. Euro Surveill 21:pii=30184.
  43. 43.
    Al-Qahtani AA, Mubin M, Dela Cruz DM et al (2017) Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia. J Infect Dev Ctries 11:81–88CrossRefPubMedGoogle Scholar
  44. 44.
    Yi H, Lee JY, Hong EH et al (2010) Oseltamivir-resistant pandemic (H1N1) 2009 virus, South Korea. Emerg Infect Dis 16:1938–1942CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Shin SY, Kang C, Gwack J et al (2011) Drug-resistant pandemic (H1N1) 2009, South Korea. Emerg Infect Dis 17:702–704CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hurt AC, Leang SK, Speers DJ et al (2012) Mutations I117V and I117M and oseltamivir sensitivity of pandemic (H1N1) 2009 viruses. Emerg Infect Dis 18:109–112CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kong W, Liu L, Wang Y et al (2014) Hemagglutinin mutation D222N of the 2009 pandemic H1N1 influenza virus alters receptor specificity without affecting virulence in mice. Virus Res 189:79–86CrossRefPubMedGoogle Scholar
  48. 48.
    Matos-Patrón A, Byrd-Leotis L, Steinhauer DA et al (2015) Amino acid substitution D222N from fatal influenza infection affects receptor-binding properties of the influenza A(H1N1)pdm09 virus. Virology 484:15–21CrossRefPubMedGoogle Scholar
  49. 49.
    Goka EA, Vallely PJ, Mutton KJ et al (2014) Mutations associated with severity of the pandemic influenza A(H1N1)pdm09 in humans: a systematic review and meta-analysis of epidemiological evidence. Arch Virol 159:3167–3183CrossRefPubMedGoogle Scholar
  50. 50.
    Jagger BW, Wise HM, Kash JC et al (2012) An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 337:199–204CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yewdell JW, Ince WL (2012) Virology. Frameshifting to PA-X influenza. Science 337:164–165CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shi M, Jagger BW, Wise HM et al (2012) Evolutionary conservation of the PA-X open reading frame in segment 3 of influenza A virus. J Virol 86:12411–12413CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kosik I, Holly J, Russ G (2013) PB1-F2 expedition from the whole protein through the domain to aa residue function. Acta Virol 57:138–148CrossRefPubMedGoogle Scholar
  54. 54.
    Hayashi T, MacDonald LA, Takimoto T (2015) Influenza A virus protein PA-X contributes to viral growth and suppression of the host antiviral and immune responses. J Virol 89:6442–6452CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bavagnoli L, Cucuzza S, Campanini G et al (2015) The novel influenza A virus protein PA-X and its naturally deleted variant show different enzymatic properties in comparison to the viral endonuclease PA. Nucleic Acids Res 43:9405–9417CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Gao H, Sun H, Hu J et al (2015) Twenty amino acids at the C-terminus of PA-X are associated with increased influenza A virus replication and pathogenicity. J Gen Virol 96:2036–2049CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Xu G, Zhang X, Sun Y et al (2016) Truncation of C-terminal 20 amino acids in PA-X contributes to adaptation of swine influenza virus in pigs. Sci Rep 6:21845CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee J, Yu H, Li Y et al (2017) Impacts of different expressions of PA-X protein on 2009 pandemic H1N1 virus replication, pathogenicity and host immune responses. Virology 504:25–35CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Trifonov V, Racaniello V, Rabadan R (2009) The contribution of the PB1-F2 protein to the fitness of influenza A viruses and its recent evolution in the 2009 influenza A (H1N1) pandemic virus. PLoS Curr 1:RRN1006CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    General Authority for Statistics, Kingdom of Saudi Arabia. Umrah Survey 2016. Accessed 15 Nov 2017
  61. 61.
    General Authority for Statistics, Kingdom of Saudi Arabia. Hajj Statistics 2016. Accessed 15 Nov 2017

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Special Infectious Agent Unit, King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  2. 2.Department of Medical Microbiology and Parasitology, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  4. 4.Division of Infectious Diseases, Department of MedicineKing Fahd Armed Forces HospitalJeddahKingdom of Saudi Arabia
  5. 5.Molecular Diagnostics LaboratoryKing Fahd Armed Forces HospitalJeddahKingdom of Saudi Arabia
  6. 6.Students’ Research and Innovation Unit, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia
  7. 7.Infection Control and Environmental Health Unit, Faculty of MedicineKing Abdulaziz University HospitalJeddahKingdom of Saudi Arabia
  8. 8.Department of Anesthesia and Critical Care, Faculty of MedicineKing Abdulaziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations