The emerging influenza virus threat: status and new prospects for its therapy and control

  • Binod Kumar
  • Kumari Asha
  • Madhu Khanna
  • Larance Ronsard
  • Clement Adebajo Meseko
  • Melvin Sanicas
Review

Abstract

Influenza A viruses (IAVs) are zoonotic pathogens that cause yearly outbreaks with high rates of morbidity and fatality. The virus continuously acquires point mutations while circulating in several hosts, ranging from aquatic birds to mammals, including humans. The wide range of hosts provides influenza A viruses greater chances of genetic re-assortment, leading to the emergence of zoonotic strains and occasional pandemics that have a severe impact on human life. Four major influenza pandemics have been reported to date, and health authorities worldwide have shown tremendous progress in efforts to control epidemics and pandemics. Here, we primarily discuss the pathogenesis of influenza virus type A, its epidemiology, pandemic potential, current status of antiviral drugs and vaccines, and ways to effectively manage the disease during a crisis.

Notes

Compliance with ethical standards

Disclosure of potential conflicts of interest

All of the authors declare that they have no conflict of interest (financial or non-financial).

Research involving human participants and/or animals

The authors further declare that this is a review article and it did not require research involving human participants and/or animals.

Informed consent

All of the authors declare that this is a review article and did not require research involving human participants; thus, no informed consent was needed.

References

  1. 1.
    Chu CM, Dawson IM, Elford WJ (1949) Filamentous forms associated with newly isolated influenza virus. Lancet 1(6554):602PubMedCrossRefGoogle Scholar
  2. 2.
    Taubenberger JK, Kash JC (2010) Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 7(6):440–451.  https://doi.org/10.1016/j.chom.2010.05.009PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fields BN, Knipe DM, Howley PM, Griffin DE (2001) Fields virology, 4th edn. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  4. 4.
    Hause BM, Collin EA, Liu R, Huang B, Sheng Z, Lu W, Wang D, Nelson EA, Li F (2014) Characterization of a novel influenza virus in cattle and Swine: proposal for a new genus in the Orthomyxoviridae family. MBio 5(2):e00031-00014.  https://doi.org/10.1128/mBio.00031-14CrossRefGoogle Scholar
  5. 5.
    Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26(Suppl 4):D49–D53PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Treanor J (2004) Influenza vaccine–outmaneuvering antigenic shift and drift. N Engl J Med 350(3):218–220.  https://doi.org/10.1056/NEJMp038238PubMedCrossRefGoogle Scholar
  7. 7.
    Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657.  https://doi.org/10.1371/journal.ppat.1003657PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci USA 109(11):4269–4274.  https://doi.org/10.1073/pnas.1116200109PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Scholtissek C, Burger H, Kistner O, Shortridge KF (1985) The nucleoprotein as a possible major factor in determining host specificity of influenza H3N2 viruses. Virology 147(2):287–294PubMedCrossRefGoogle Scholar
  10. 10.
    Taubenberger JK, Morens DM (2010) Influenza: the once and future pandemic. Public Health Rep 125(Suppl 3):16–26PubMedPubMedCentralGoogle Scholar
  11. 11.
    Reid AH, Taubenberger JK (2003) The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol 84(Pt 9):2285–2292.  https://doi.org/10.1099/vir.0.19302-0PubMedCrossRefGoogle Scholar
  12. 12.
    Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12(1):15–22.  https://doi.org/10.3201/eid1201.050979PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Johnson NP, Mueller J (2002) Updating the accounts: global mortality of the 1918–1920 “Spanish” influenza pandemic. Bull Hist Med 76(1):105–115PubMedCrossRefGoogle Scholar
  14. 14.
    Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG (2005) Characterization of the 1918 influenza virus polymerase genes. Nature 437(7060):889–893.  https://doi.org/10.1038/nature04230PubMedCrossRefGoogle Scholar
  15. 15.
    Kawaoka YCT, Sladen WL, Webster RG (1988) Is the gene pool of influenza viruses in shorebirds and gulls different from that in wild ducks? Virology 163(1):247–250.  https://doi.org/10.1016/0042-6822(88)90260-7PubMedCrossRefGoogle Scholar
  16. 16.
    Smith GJ, Bahl J, Vijaykrishna D, Zhang J, Poon LL, Chen H, Webster RG, Peiris JS, Guan Y (2009) Dating the emergence of pandemic influenza viruses. Proc Natl Acad Sci USA 106(28):11709–11712.  https://doi.org/10.1073/pnas.0904991106PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Meseko CA, Odaibo GN, Olaleye DO (2014) Detection and isolation of 2009 pandemic influenza A/H1N1 virus in commercial piggery, Lagos Nigeria. Vet Microbiol 168(1):197–201.  https://doi.org/10.1016/j.vetmic.2013.11.003PubMedCrossRefGoogle Scholar
  18. 18.
    McCullers JA, Bartmess KC (2003) Role of neuraminidase in lethal synergism between influenza virus and Streptococcus pneumoniae. J Infect Dis 187(6):1000–1009.  https://doi.org/10.1086/368163PubMedCrossRefGoogle Scholar
  19. 19.
    Glezen WP (1996) Emerging infections: pandemic influenza. Epidemiol Rev 18(1):64–76PubMedCrossRefGoogle Scholar
  20. 20.
    Fukumi H (1959) Summary report on the Asian influenza epidemic in Japan, 1957. Bull World Health Organ 20(2–3):187–198PubMedPubMedCentralGoogle Scholar
  21. 21.
    Henderson DA, Courtney B, Inglesby TV, Toner E, Nuzzo JB (2009) Public health and medical responses to the 1957–58 influenza pandemic. Biosecur Bioterror 7(3):265–273.  https://doi.org/10.1089/bsp.2009.0729PubMedCrossRefGoogle Scholar
  22. 22.
    Eickhoff TC, Sherman IL, Serfling RE (1961) Observations on excess mortality associated with epidemic influenza. JAMA 176:776–782PubMedCrossRefGoogle Scholar
  23. 23.
    Pan K (2011) Understanding original antigenic sin in influenza with a dynamical system. PLoS One 6(8):e23910.  https://doi.org/10.1371/journal.pone.0023910PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Schulman JL, Kilbourne ED (1969) Independent variation in nature of hemagglutinin and neuraminidase antigens of influenza virus: distinctiveness of hemagglutinin antigen of Hong Kong-68 virus. Proc Natl Acad Sci USA 63(2):326–333PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cockburn WC, Delon PJ, Ferreira W (1969) Origin and progress of the 1968–69 Hong Kong influenza epidemic. Bull World Health Organ 41(3):345–348PubMedGoogle Scholar
  26. 26.
    Scholtissek C, Rohde W, Von Hoyningen V, Rott R (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87(1):13–20PubMedCrossRefGoogle Scholar
  27. 27.
    Khanna M, Saxena L, Gupta A, Kumar B, Rajput R (2013) Influenza pandemics of 1918 and 2009: a comparative account. Future Virol 8:335–342Google Scholar
  28. 28.
    Khanna M, Kumar B, Gupta N, Kumar P, Gupta A, Vijayan VK, Kaur H (2009) Pandemic swine influenza virus (H1N1): a threatening evolution. Indian J Microbiol 49(4):365–369.  https://doi.org/10.1007/s12088-009-0064-3PubMedCrossRefGoogle Scholar
  29. 29.
    Morens DM, Taubenberger JK, Fauci AS (2009) The persistent legacy of the 1918 influenza virus. N Engl J Med 361(3):225–229.  https://doi.org/10.1056/NEJMp0904819PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Khanna M, Kumar B, Gupta A, Kumar P (2012) Pandemic influenza A H1N1 (2009) virus: lessons from the past and implications for the future. Indian J Virol 23(1):12–17.  https://doi.org/10.1007/s13337-012-0066-3PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Patel M, Dennis A, Flutter C, Khan Z (2010) Pandemic (H1N1) 2009 influenza. Br J Anaesth 104(2):128–142.  https://doi.org/10.1093/bja/aep375PubMedCrossRefGoogle Scholar
  32. 32.
    Cox CM, Blanton L, Dhara R, Brammer L, Finelli L (2011) 2009 Pandemic influenza A (H1N1) deaths among children—United States, 2009–2010. Clin Infect Dis 52(Suppl 1):S69–S74.  https://doi.org/10.1093/cid/ciq011PubMedCrossRefGoogle Scholar
  33. 33.
    Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, Vugia D, Harriman K, Matyas B, Glaser CA, Samuel MC, Rosenberg J, Talarico J, Hatch D, California Pandemic Working G (2009) Factors associated with death or hospitalization due to pandemic 2009 influenza A(H1N1) infection in California. JAMA 302(17):1896–1902.  https://doi.org/10.1001/jama.2009.1583PubMedCrossRefGoogle Scholar
  34. 34.
    Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, Kroneman M, Van Kerkhove MD, Mounts AW, Paget WJ, Teams GLC (2013) Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a modeling study. PLoS Med 10(11):e1001558.  https://doi.org/10.1371/journal.pmed.1001558PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Munster VJ, Baas C, Lexmond P, Waldenstrom J, Wallensten A, Fransson T, Rimmelzwaan GF, Beyer WE, Schutten M, Olsen B, Osterhaus AD, Fouchier RA (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathog 3(5):e61.  https://doi.org/10.1371/journal.ppat.0030061PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hofle U, Van de Bildt MW, Leijten LM, Van Amerongen G, Verhagen JH, Fouchier RA, Osterhaus AD, Kuiken T (2012) Tissue tropism and pathology of natural influenza virus infection in black-headed gulls (Chroicocephalus ridibundus). Avian Pathol 41(6):547–553.  https://doi.org/10.1080/03079457.2012.744447PubMedCrossRefGoogle Scholar
  37. 37.
    Bodewes R, Bestebroer TM, van der Vries E, Verhagen JH, Herfst S, Koopmans MP, Fouchier RA, Pfankuche VM, Wohlsein P, Siebert U, Baumgartner W, Osterhaus AD (2015) Avian Influenza A(H10N7) virus-associated mass deaths among harbor seals. Emerg Infect Dis 21(4):720–722.  https://doi.org/10.3201/eid2104.141675PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hinshaw VS, Bean WJ, Geraci J, Fiorelli P, Early G, Webster RG (1986) Characterization of two influenza A viruses from a pilot whale. J Virol 58(2):655–656PubMedPubMedCentralGoogle Scholar
  39. 39.
    Parrish CR, Murcia PR, Holmes EC (2015) Influenza virus reservoirs and intermediate hosts: dogs, horses, and new possibilities for influenza virus exposure of humans. J Virol 89(6):2990–2994.  https://doi.org/10.1128/JVI.03146-14PubMedCrossRefGoogle Scholar
  40. 40.
    Yondon M, Zayat B, Nelson MI, Heil GL, Anderson BD, Lin X, Halpin RA, McKenzie PP, White SK, Wentworth DE, Gray GC (2014) Equine influenza A(H3N8) virus isolated from Bactrian camel, Mongolia. Emerg Infect Dis 20(12):2144–2147.  https://doi.org/10.3201/eid2012.140435PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Short KR, Richard M, Verhagen JH, van Riel D, Schrauwen EJ, van den Brand JM, Manz B, Bodewes R, Herfst S (2015) One health, multiple challenges: The inter-species transmission of influenza A virus. One Health 1:1–13.  https://doi.org/10.1016/j.onehlt.2015.03.001PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhou L, Tan Y, Kang M, Liu F, Ren R, Wang Y, Chen T, Yang Y, Li C, Wu J, Zhang H, Li D, Greene CM, Zhou S, Iuliano AD, Havers F, Ni D, Wang D, Feng Z, Uyeki TM, Li Q (2017) Preliminary epidemiology of human infections with highly pathogenic avian influenza A(H7N9) virus, China. Emerg Infect Dis 23(8):1355–1359.  https://doi.org/10.3201/eid2308.170640PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ke C, Mok CKP, Zhu W, Zhou H, He J, Guan W, Wu J, Song W, Wang D, Liu J, Lin Q, Chu DKW, Yang L, Zhong N, Yang Z, Shu Y, Peiris JSM (2017) Human infection with highly pathogenic avian influenza A(H7N9) virus, China. Emerg Infect Dis 23(8):1332–1340.  https://doi.org/10.3201/eid2308.170600PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Shen YY, Ke CW, Li Q, Yuan RY, Xiang D, Jia WX, Yu YD, Liu L, Huang C, Qi WB, Sikkema R, Wu J, Koopmans M, Liao M (2016) Novel reassortant avian influenza A(H5N6) viruses in humans, Guangdong, China, 2015. Emerg Infect Dis 22(8):1507–1509.  https://doi.org/10.3201/eid2208.160146PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Jeong J, Kang HM, Lee EK, Song BM, Kwon YK, Kim HR, Choi KS, Kim JY, Lee HJ, Moon OK, Jeong W, Choi J, Baek JH, Joo YS, Park YH, Lee HS, Lee YJ (2014) Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Vet Microbiol 173(3–4):249–257.  https://doi.org/10.1016/j.vetmic.2014.08.002PubMedCrossRefGoogle Scholar
  46. 46.
    Reperant LA, Rimmelzwaan GF, Kuiken T (2009) Avian influenza viruses in mammals. Rev Sci Tech 28(1):137–159PubMedCrossRefGoogle Scholar
  47. 47.
    Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH Jr (1982) Survival of influenza viruses on environmental surfaces. J Infect Dis 146(1):47–51PubMedCrossRefGoogle Scholar
  48. 48.
    Minodier L, Charrel RN, Ceccaldi PE, van der Werf S, Blanchon T, Hanslik T, Falchi A (2015) Prevalence of gastrointestinal symptoms in patients with influenza, clinical significance, and pathophysiology of human influenza viruses in faecal samples: what do we know? Virol J 12:215.  https://doi.org/10.1186/s12985-015-0448-4PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yamagishi T, Matsui T, Nakamura N, Oyama T, Taniguchi K, Aoki T, Hirakawa K, Okabe N (2010) Onset and duration of symptoms and timing of disease transmission of 2009 influenza A (H1N1) in an outbreak in Fukuoka, Japan, June 2009. Jpn J Infect Dis 63(5):327–331PubMedGoogle Scholar
  50. 50.
    To KK, Wong SS, Li IW, Hung IF, Tse H, Woo PC, Chan KH, Yuen KY (2010) Concurrent comparison of epidemiology, clinical presentation and outcome between adult patients suffering from the pandemic influenza A (H1N1) 2009 virus and the seasonal influenza A virus infection. Postgrad Med J 86(1019):515–521.  https://doi.org/10.1136/pgmj.2009.096206PubMedCrossRefGoogle Scholar
  51. 51.
    Pati DR, Khanna M, Kumar B, Kumar P, Rajput R, Saxena L, Sharvani Gaur SN (2013) Clinical presentation of patients with seasonal influenza and pandemic influenza A (H1N1-2009) requiring hospitalisation. Indian J Chest Dis Allied Sci 55(1):15–19PubMedGoogle Scholar
  52. 52.
    Kumar B, Pati DR, Khanna M, Kumar P, Daga MK, Singh V, Khare S, Gaur S (2012) Age-sex distribution and seasonality pattern among influenza virus infected patients in Delhi, 2009–2010. Indian J Community Med 37(1):57–58.  https://doi.org/10.4103/0970-0218.94028PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lessler J, Reich NG, Brookmeyer R, Perl TM, Nelson KE, Cummings DA (2009) Incubation periods of acute respiratory viral infections: a systematic review. Lancet Infect Dis 9(5):291–300.  https://doi.org/10.1016/S1473-3099(09)70069-6PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Zhou BT, Fan YM, Li TM, Liu XQ (2010) Clinical features of initial cases of 2009 pandemic influenza A (H1N1) in Macau, China. Chin Med J (Engl) 123(19):2651–2654Google Scholar
  55. 55.
    Khanna M, Kumar P, Choudhary K, Kumar B, Vijayan VK (2008) Emerging influenza virus: a global threat. J Biosci 33(4):475–482PubMedCrossRefGoogle Scholar
  56. 56.
    Jia N, Gao Y, Suo JJ, Xie LJ, Yan ZQ, Xing YB, He L, Liu YX (2011) Viral shedding in Chinese young adults with mild 2009 H1N1 influenza. Chin Med J (Engl) 124(10):1576–1579Google Scholar
  57. 57.
    Souza TM, Salluh JI, Bozza FA, Mesquita M, Soares M, Motta FC, Pitrowsky MT, de Lourdes Oliveira M, Mishin VP, Gubareva LV, Whitney A, Rocco SA, Goncalves VM, Marques VP, Velasco E, Siqueira MM (2010) H1N1pdm influenza infection in hospitalized cancer patients: clinical evolution and viral analysis. PLoS One 5(11):e14158.  https://doi.org/10.1371/journal.pone.0014158PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    To KK, Chan KH, Li IW, Tsang TY, Tse H, Chan JF, Hung IF, Lai ST, Leung CW, Kwan YW, Lau YL, Ng TK, Cheng VC, Peiris JS, Yuen KY (2010) Viral load in patients infected with pandemic H1N1 2009 influenza A virus. J Med Virol 82(1):1–7.  https://doi.org/10.1002/jmv.21664PubMedCrossRefGoogle Scholar
  59. 59.
    Kumar B, Khanna M, Kumar P, Gupta A, Daga MK, Chawla-Sarkar M, Chadha MS, Mishra AC, Kaur H (2011) Quantification of viral load in clinical specimens collected from different body sites of patients infected with influenza viruses. Int J Med Med Sci 3(5):144–148Google Scholar
  60. 60.
    Grondahl B, Puppe W, Hoppe A, Kuhne I, Weigl JA, Schmitt HJ (1999) Rapid identification of nine microorganisms causing acute respiratory tract infections by single-tube multiplex reverse transcription-PCR: feasibility study. J Clin Microbiol 37(1):1–7PubMedPubMedCentralGoogle Scholar
  61. 61.
    Fox TG, Christenson JC (2014) Influenza and parainfluenza viral infections in children. Pediatr Rev 35(6):217–227.  https://doi.org/10.1542/pir.35-6-217 (quiz 228)PubMedCrossRefGoogle Scholar
  62. 62.
    Kumar P, Kumar B, Gupta A, Sharma B, Vijayan VK, Khare S, Singh V, Daga MK, Chadha MS, Mishra AC, Kaur H, Khanna M (2010) Diagnosis of novel pandemic influenza virus 2009 H1N1 in hospitalized patients. Indian J Virol 21(1):45–49.  https://doi.org/10.1007/s13337-010-0005-0PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Chan KH, Chan KM, Ho YL, Lam YP, Tong HL, Poon LL, Cowling BJ, Peiris JS (2012) Quantitative analysis of four rapid antigen assays for detection of pandemic H1N1 2009 compared with seasonal H1N1 and H3N2 influenza A viruses on nasopharyngeal aspirates from patients with influenza. J Virol Methods 186(1–2):184–188.  https://doi.org/10.1016/j.jviromet.2012.09.001PubMedCrossRefGoogle Scholar
  64. 64.
    Kumar B, Sharma B, Khanna M, Singh V, Daga MK, Vijayan VK, Mishra AC, Chadha MS, Sarkar M, Kaur H (2010) Comparison of various immunoassay kits for rapid screening of pandemic influenza H1N1-2009 viruses. J Public Health Epidemiol 2(8):175–179Google Scholar
  65. 65.
    van Elden LJ, Nijhuis M, Schipper P, Schuurman R, van Loon AM (2001) Simultaneous detection of influenza viruses A and B using real-time quantitative PCR. J Clin Microbiol 39(1):196–200.  https://doi.org/10.1128/JCM.39.1.196-200.2001PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kumar B, Kumar P, Rajput R, Daga MK, Singh V, Khanna M (2012) Comparative reproducibility of SYBR Green I and TaqMan real-time PCR chemistries for the analysis of matrix and hemagglutinin genes of Influenza A viruses. Int J Collab Res Intern Med Public Health 4(7):1346–1352Google Scholar
  67. 67.
    Kawai Y, Kimura Y, Lezhava A, Kanamori H, Usui K, Hanami T, Soma T, Morlighem JE, Saga S, Ishizu Y, Aoki S, Endo R, Oguchi-Katayama A, Kogo Y, Mitani Y, Ishidao T, Kawakami C, Kurata H, Furuya Y, Saito T, Okazaki N, Chikahira M, Hayashi E, Tsuruoka S, Toguchi T, Saito Y, Ban T, Izumi S, Uryu H, Kudo K, Sakai-Tagawa Y, Kawaoka Y, Hirai A, Hayashizaki Y, Ishikawa T (2012) One-step detection of the 2009 pandemic influenza A(H1N1) virus by the RT-SmartAmp assay and its clinical validation. PLoS One 7(1):e30236.  https://doi.org/10.1371/journal.pone.0030236PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Rajput R, Sharma G, Rawat V, Gautam A, Kumar B, Pattnaik B, Pradhan HK, Khanna M (2015) Diagnostic potential of recombinant scFv antibodies generated against hemagglutinin protein of influenza A virus. Front Immunol 6:440.  https://doi.org/10.3389/fimmu.2015.00440PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Kumar B, Rajput R, Pati DR, Khanna M (2015) Potent intracellular knock-down of influenza A virus M2 gene transcript by DNAzymes considerably reduces viral replication in host cells. Mol Biotechnol 57(9):836–845.  https://doi.org/10.1007/s12033-015-9876-zPubMedCrossRefGoogle Scholar
  70. 70.
    Kumar B, Kumar P, Rajput R, Saxena L, Daga MK, Khanna M (2013) Sequence-specific cleavage of BM2 gene transcript of influenza B virus by 10-23 catalytic motif containing DNA enzymes significantly inhibits viral RNA translation and replication. Nucleic Acid Ther 23(5):355–362.  https://doi.org/10.1089/nat.2013.0432PubMedCrossRefGoogle Scholar
  71. 71.
    Suzuki H, Saito R, Masuda H, Oshitani H, Sato M, Sato I (2003) Emergence of amantadine-resistant influenza A viruses: epidemiological study. J Infect Chemother 9(3):195–200.  https://doi.org/10.1007/s10156-003-0262-6PubMedCrossRefGoogle Scholar
  72. 72.
    Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4(11):3021–3024PubMedPubMedCentralGoogle Scholar
  73. 73.
    Macdonald SJ, Watson KG, Cameron R, Chalmers DK, Demaine DA, Fenton RJ, Gower D, Hamblin JN, Hamilton S, Hart GJ, Inglis GG, Jin B, Jones HT, McConnell DB, Mason AM, Nguyen V, Owens IJ, Parry N, Reece PA, Shanahan SE, Smith D, Wu WY, Tucker SP (2004) Potent and long-acting dimeric inhibitors of influenza virus neuraminidase are effective at a once-weekly dosing regimen. Antimicrob Agents Chemother 48(12):4542–4549.  https://doi.org/10.1128/AAC.48.12.4542-4549.2004PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K (2005) Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 49(3):981–986.  https://doi.org/10.1128/AAC.49.3.981-986.2005PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Malakhov MP, Aschenbrenner LM, Smee DF, Wandersee MK, Sidwell RW, Gubareva LV, Mishin VP, Hayden FG, Kim DH, Ing A, Campbell ER, Yu M, Fang F (2006) Sialidase fusion protein as a novel broad-spectrum inhibitor of influenza virus infection. Antimicrob Agents Chemother 50(4):1470–1479.  https://doi.org/10.1128/AAC.50.4.1470-1479.2006PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ding Y, Cao Z, Cao L, Ding G, Wang Z, Xiao W (2017) Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci Rep 7:45723.  https://doi.org/10.1038/srep45723PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Stevaert A, Naesens L (2016) The influenza virus polymerase complex: an update on its structure, functions, and significance for antiviral drug design. Med Res Rev 36(6):1127–1173.  https://doi.org/10.1002/med.21401PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251.  https://doi.org/10.1126/science.1171491PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Wathen MW, Barro M, Bright RA (2013) Antivirals in seasonal and pandemic influenza—future perspectives. Influenza Other Respir Viruses 7(Suppl 1):76–80.  https://doi.org/10.1111/irv.12049PubMedCrossRefGoogle Scholar
  80. 80.
    Sacramento CQ, Marttorelli A, Fintelman-Rodrigues N, de Freitas CS, de Melo GR, Rocha ME, Kaiser CR, Rodrigues KF, da Costa GL, Alves CM, Santos-Filho O, Barbosa JP, Souza TM (2015) Aureonitol, a fungi-derived tetrahydrofuran, inhibits influenza replication by targeting its surface glycoprotein hemagglutinin. PLoS One 10(10):e0139236.  https://doi.org/10.1371/journal.pone.0139236PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Reuman PD, Bernstein DI, Keefer MC, Young EC, Sherwood JR, Schiff GM (1989) Efficacy and safety of low dosage amantadine hydrochloride as prophylaxis for influenza A. Antiviral Res 11(1):27–40PubMedCrossRefGoogle Scholar
  82. 82.
    Heider H, Adamczyk B, Presber HW, Schroeder C, Feldblum R, Indulen MK (1981) Occurrence of amantadine- and rimantadine-resistant influenza A virus strains during the 1980 epidemic. Acta Virol 25(6):395–400PubMedGoogle Scholar
  83. 83.
    Ziegler T, Hemphill ML, Ziegler ML, Perez-Oronoz G, Klimov AI, Hampson AW, Regnery HL, Cox NJ (1999) Low incidence of rimantadine resistance in field isolates of influenza A viruses. J Infect Dis 180(4):935–939.  https://doi.org/10.1086/314994PubMedCrossRefGoogle Scholar
  84. 84.
    Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI (2006) Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 295(8):891–894.  https://doi.org/10.1001/jama.295.8.joc60020PubMedCrossRefGoogle Scholar
  85. 85.
    Centers for Disease Control and Prevention (2006) High levels of adamantane resistance among influenza A (H3N2) viruses and interim guidelines for use of antiviral agents–United States, 2005–06 influenza season. MMWR Morb Mortal Wkly Rep 55(2):44–46Google Scholar
  86. 86.
    Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, Povinelli L, Cox NJ, Klimov AI (2005) Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: a cause for concern. Lancet 366(9492):1175–1181.  https://doi.org/10.1016/S0140-6736(05)67338-2PubMedCrossRefGoogle Scholar
  87. 87.
    Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI (2007) Surveillance of resistance to adamantanes among influenza A(H3N2) and A(H1N1) viruses isolated worldwide. J Infect Dis 196(2):249–257.  https://doi.org/10.1086/518936PubMedCrossRefGoogle Scholar
  88. 88.
    Rungrotmongkol T, Intharathep P, Malaisree M, Nunthaboot N, Kaiyawet N, Sompornpisut P, Payungporn S, Poovorawan Y, Hannongbua S (2009) Susceptibility of antiviral drugs against 2009 influenza A (H1N1) virus. Biochem Biophys Res Commun 385(3):390–394.  https://doi.org/10.1016/j.bbrc.2009.05.066PubMedCrossRefGoogle Scholar
  89. 89.
    Husain M (2014) Avian influenza A (H7N9) virus infection in humans: epidemiology, evolution, and pathogenesis. Infect Genet Evol 28:304–312.  https://doi.org/10.1016/j.meegid.2014.10.016PubMedCrossRefGoogle Scholar
  90. 90.
    World Health Organization Global Influenza Program Surveillance Network (2005) Evolution of H5N1 avian influenza viruses in Asia. Emerg Infect Dis 11(10):1515–1521.  https://doi.org/10.3201/eid1110.050644CrossRefGoogle Scholar
  91. 91.
    Dong G, Peng C, Luo J, Wang C, Han L, Wu B, Ji G, He H (2015) Adamantane-resistant influenza a viruses in the world (1902–2013): frequency and distribution of M2 gene mutations. PLoS One 10(3):e0119115.  https://doi.org/10.1371/journal.pone.0119115PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355(9206):827–835.  https://doi.org/10.1016/S0140-6736(99)11433-8PubMedCrossRefGoogle Scholar
  93. 93.
    Moscona A (2005) Neuraminidase inhibitors for influenza. N Engl J Med 353(13):1363–1373.  https://doi.org/10.1056/NEJMra050740PubMedCrossRefGoogle Scholar
  94. 94.
    Moss RB, Davey RT, Steigbigel RT, Fang F (2010) Targeting pandemic influenza: a primer on influenza antivirals and drug resistance. J Antimicrob Chemother 65(6):1086–1093.  https://doi.org/10.1093/jac/dkq100PubMedCrossRefGoogle Scholar
  95. 95.
    Escuret V, Frobert E, Bouscambert-Duchamp M, Sabatier M, Grog I, Valette M, Lina B, Morfin F, Ferraris O (2008) Detection of human influenza A (H1N1) and B strains with reduced sensitivity to neuraminidase inhibitors. J Clin Virol 41(1):25–28.  https://doi.org/10.1016/j.jcv.2007.10.019PubMedCrossRefGoogle Scholar
  96. 96.
    Sheu TG, Deyde VM, Okomo-Adhiambo M, Garten RJ, Xu X, Bright RA, Butler EN, Wallis TR, Klimov AI, Gubareva LV (2008) Surveillance for neuraminidase inhibitor resistance among human influenza A and B viruses circulating worldwide from 2004 to 2008. Antimicrob Agents Chemother 52(9):3284–3292.  https://doi.org/10.1128/AAC.00555-08PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Okomo-Adhiambo M, Sleeman K, Ballenger K, Nguyen HT, Mishin VP, Sheu TG, Smagala J, Li Y, Klimov AI, Gubareva LV (2010) Neuraminidase inhibitor susceptibility testing in human influenza viruses: a laboratory surveillance perspective. Viruses 2(10):2269–2289.  https://doi.org/10.3390/v2102269PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gubareva LV, Trujillo AA, Okomo-Adhiambo M, Mishin VP, Deyde VM, Sleeman K, Nguyen HT, Sheu TG, Garten RJ, Shaw MW, Fry AM, Klimov AI (2010) Comprehensive assessment of 2009 pandemic influenza A (H1N1) virus drug susceptibility in vitro. Antivir Ther 15(8):1151–1159.  https://doi.org/10.3851/IMP1678PubMedCrossRefGoogle Scholar
  99. 99.
    Baranovich T, Saito R, Suzuki Y, Zaraket H, Dapat C, Caperig-Dapat I, Oguma T, Shabana II, Saito T, Suzuki H, Japanese Influenza Collaborative Study Group (2010) Emergence of H274Y oseltamivir-resistant A(H1N1) influenza viruses in Japan during the 2008-2009 season. J Clin Virol 47(1):23–28.  https://doi.org/10.1016/j.jcv.2009.11.003PubMedCrossRefGoogle Scholar
  100. 100.
    Coffield AB, Maciosek MV, McGinnis JM, Harris JR, Caldwell MB, Teutsch SM, Atkins D, Richland JH, Haddix A (2001) Priorities among recommended clinical preventive services. Am J Prev Med 21(1):1–9PubMedCrossRefGoogle Scholar
  101. 101.
    Barberis I, Myles P, Ault SK, Bragazzi NL, Martini M (2016) History and evolution of influenza control through vaccination: from the first monovalent vaccine to universal vaccines. J Prev Med Hyg 57(3):E115–E120PubMedPubMedCentralGoogle Scholar
  102. 102.
    Belshe RB, Ambrose CS, Yi T (2008) Safety and efficacy of live attenuated influenza vaccine in children 2–7 years of age. Vaccine 26(Suppl 4):D10–D16.  https://doi.org/10.1016/j.vaccine.2008.06.083PubMedCrossRefGoogle Scholar
  103. 103.
    Pebody R, Warburton F, Andrews N, Ellis J, von Wissmann B, Robertson C, Yonova I, Cottrell S, Gallagher N, Green H, Thompson C, Galiano M, Marques D, Gunson R, Reynolds A, Moore C, Mullett D, Pathirannehelage S, Donati M, Johnston J, de Lusignan S, McMenamin J, Zambon M (2015) Effectiveness of seasonal influenza vaccine in preventing laboratory-confirmed influenza in primary care in the United Kingdom: 2014/15 end of season results. Euro Surveill 20(36).  https://doi.org/10.2807/1560-7917.es.2015.20.36.30013
  104. 104.
    Kumar P, Khanna M, Kumar B, Rajput R, Banerjea AC (2012) A conserved matrix epitope based DNA vaccine protects mice against influenza A virus challenge. Antiviral Res 93(1):78–85.  https://doi.org/10.1016/j.antiviral.2011.10.021PubMedCrossRefGoogle Scholar
  105. 105.
    Khanna M, Sharma S, Kumar B, Rajput R (2014) Protective immunity based on the conserved hemagglutinin stalk domain and its prospects for universal influenza vaccine development. Biomed Res Int 2014:546274.  https://doi.org/10.1155/2014/546274PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, Garcia-Sastre A, Palese P (2010) Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio 1(1).  https://doi.org/10.1128/mbio.00018-10
  107. 107.
    Schwartzman LM, Cathcart AL, Pujanauski LM, Qi L, Kash JC, Taubenberger JK (2015) An intranasal virus-like particle vaccine broadly protects mice from multiple subtypes of influenza A virus. MBio 6(4):e01044.  https://doi.org/10.1128/mBio.01044-15PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wong SS, Webby RJ (2013) Traditional and new influenza vaccines. Clin Microbiol Rev 26(3):476–492.  https://doi.org/10.1128/CMR.00097-12PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hung HC, Liu CL, Hsu JT, Horng JT, Fang MY, Wu SY, Ueng SH, Wang MY, Yaw CW, Hou MH (2012) Development of an anti-influenza drug screening assay targeting nucleoproteins with tryptophan fluorescence quenching. Anal Chem 84(15):6391–6399.  https://doi.org/10.1021/ac2022426PubMedCrossRefGoogle Scholar
  110. 110.
    Basu D, Walkiewicz MP, Frieman M, Baric RS, Auble DT, Engel DA (2009) Novel influenza virus NS1 antagonists block replication and restore innate immune function. J Virol 83(4):1881–1891.  https://doi.org/10.1128/JVI.01805-08PubMedCrossRefGoogle Scholar
  111. 111.
    Rajput R, Khanna M, Kumar P, Kumar B, Sharma S, Gupta N, Saxena L (2012) Small interfering RNA targeting the nonstructural gene 1 transcript inhibits influenza A virus replication in experimental mice. Nucleic Acid Ther 22(6):414–422.  https://doi.org/10.1089/nat.2012.0359PubMedGoogle Scholar
  112. 112.
    Kumar P, Kumar B, Rajput R, Saxena L, Banerjea AC, Khanna M (2013) Cross-protective effect of antisense oligonucleotide developed against the common 3’ NCR of influenza A virus genome. Mol Biotechnol 55(3):203–211.  https://doi.org/10.1007/s12033-013-9670-8PubMedCrossRefGoogle Scholar
  113. 113.
    Ge Q, McManus MT, Nguyen T, Shen CH, Sharp PA, Eisen HN, Chen J (2003) RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci USA 100(5):2718–2723.  https://doi.org/10.1073/pnas.0437841100PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Bitko V, Barik S (2001) Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 1:34PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Khanna M, Saxena L, Rajput R, Kumar B, Prasad R (2015) Gene silencing: a therapeutic approach to combat influenza virus infections. Future Microbiol 10(1):131–140.  https://doi.org/10.2217/fmb.14.94PubMedCrossRefGoogle Scholar
  116. 116.
    Evdokimov AA, Mazurkova NA, Malygin EG, Zarytova VF, Levina AS, Repkova MN, Zagrebelnyi SN, Netesova NA (2013) Design of deoxyribozymes for inhibition of influenza A virus. Mol Biol (Mosk) 47(1):83–93CrossRefGoogle Scholar
  117. 117.
    Kumar B, Khanna M, Kumar P, Sood V, Vyas R, Banerjea AC (2012) Nucleic acid-mediated cleavage of M1 gene of influenza A virus is significantly augmented by antisense molecules targeted to hybridize close to the cleavage site. Mol Biotechnol 51(1):27–36.  https://doi.org/10.1007/s12033-011-9437-zPubMedCrossRefGoogle Scholar
  118. 118.
    Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, Rao SS, Kong WP, Wang L, Nabel GJ (2013) Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 499(7456):102–106.  https://doi.org/10.1038/nature12202PubMedCrossRefGoogle Scholar
  119. 119.
    Hanson BJ, Boon AC, Lim AP, Webb A, Ooi EE, Webby RJ (2006) Passive immunoprophylaxis and therapy with humanized monoclonal antibody specific for influenza A H5 hemagglutinin in mice. Respir Res 7:126.  https://doi.org/10.1186/1465-9921-7-126PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wei G, Meng W, Guo H, Pan W, Liu J, Peng T, Chen L, Chen CY (2011) Potent neutralization of influenza A virus by a single-domain antibody blocking M2 ion channel protein. PLoS One 6(12):e28309.  https://doi.org/10.1371/journal.pone.0028309PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Guinea R, Carrasco L (1994) Concanamycin A blocks influenza virus entry into cells under acidic conditions. FEBS Lett 349(3):327–330PubMedCrossRefGoogle Scholar
  122. 122.
    Zhirnov OP, Klenk HD, Wright PF (2011) Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral Res 92(1):27–36.  https://doi.org/10.1016/j.antiviral.2011.07.014PubMedCrossRefGoogle Scholar
  123. 123.
    Dudek SE, Luig C, Pauli EK, Schubert U, Ludwig S (2010) The clinically approved proteasome inhibitor PS-341 efficiently blocks influenza A virus and vesicular stomatitis virus propagation by establishing an antiviral state. J Virol 84(18):9439–9451.  https://doi.org/10.1128/JVI.00533-10PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Corti D, Suguitan AL Jr, Pinna D, Silacci C, Fernandez-Rodriguez BM, Vanzetta F, Santos C, Luke CJ, Torres-Velez FJ, Temperton NJ, Weiss RA, Sallusto F, Subbarao K, Lanzavecchia A (2010) Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Investig 120(5):1663–1673.  https://doi.org/10.1172/JCI41902PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wrammert J, Koutsonanos D, Li GM, Edupuganti S, Sui J, Morrissey M, McCausland M, Skountzou I, Hornig M, Lipkin WI, Mehta A, Razavi B, Del Rio C, Zheng NY, Lee JH, Huang M, Ali Z, Kaur K, Andrews S, Amara RR, Wang Y, Das SR, O’Donnell CD, Yewdell JW, Subbarao K, Marasco WA, Mulligan MJ, Compans R, Ahmed R, Wilson PC (2011) Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med 208(1):181–193.  https://doi.org/10.1084/jem.20101352PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Henry Dunand CJ, Leon PE, Kaur K, Tan GS, Zheng NY, Andrews S, Huang M, Qu X, Huang Y, Salgado-Ferrer M, Ho IY, Taylor W, Hai R, Wrammert J, Ahmed R, Garcia-Sastre A, Palese P, Krammer F, Wilson PC (2015) Preexisting human antibodies neutralize recently emerged H7N9 influenza strains. J Clin Investig 125(3):1255–1268.  https://doi.org/10.1172/JCI74374PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, Vogels R, Brakenhoff JP, Kompier R, Koldijk MH, Cornelissen LA, Poon LL, Peiris M, Koudstaal W, Wilson IA, Goudsmit J (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333(6044):843–850.  https://doi.org/10.1126/science.1204839PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Wu Y, Cho M, Shore D, Song M, Choi J, Jiang T, Deng YQ, Bourgeois M, Almli L, Yang H, Chen LM, Shi Y, Qi J, Li A, Yi KS, Chang M, Bae JS, Lee H, Shin J, Stevens J, Hong S, Qin CF, Gao GF, Chang SJ, Donis RO (2015) A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus. Nat Commun 6:7708.  https://doi.org/10.1038/ncomms8708PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044):850–856.  https://doi.org/10.1126/science.1205669PubMedCrossRefGoogle Scholar
  130. 130.
    Kallewaard NL, Corti D, Collins PJ, Neu U, McAuliffe JM, Benjamin E, Wachter-Rosati L, Palmer-Hill FJ, Yuan AQ, Walker PA, Vorlaender MK, Bianchi S, Guarino B, De Marco A, Vanzetta F, Agatic G, Foglierini M, Pinna D, Fernandez-Rodriguez B, Fruehwirth A, Silacci C, Ogrodowicz RW, Martin SR, Sallusto F, Suzich JA, Lanzavecchia A, Zhu Q, Gamblin SJ, Skehel JJ (2016) Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell 166(3):596–608.  https://doi.org/10.1016/j.cell.2016.05.073PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Zambon MC (1999) Epidemiology and pathogenesis of influenza. J Antimicrob Chemother 44(suppl B):3–9PubMedCrossRefGoogle Scholar
  132. 132.
    Samson M, Pizzorno A, Abed Y, Boivin G (2013) Influenza virus resistance to neuraminidase inhibitors. Antiviral Res 98(2):174–185.  https://doi.org/10.1016/j.antiviral.2013.03.014PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Microbiology and Immunology, Chicago Medical SchoolRosalind Franklin University of Medicine and ScienceNorth ChicagoUSA
  2. 2.Department of Respiratory Virology, Vallabhbhai Patel Chest InstituteUniversity of DelhiDelhiIndia
  3. 3.Ragon Institute of MGH, MIT and HarvardCambridgeUSA
  4. 4.Virology DepartmentNational Veterinary Research InstituteVomNigeria
  5. 5.Sanofi Pasteur, Asia and JPAC RegionSingaporeSingapore

Personalised recommendations