Advertisement

Archives of Virology

, Volume 163, Issue 3, pp 737–743 | Cite as

Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil

  • M. A. Macedo
  • L. C. Albuquerque
  • M. R. Maliano
  • J. O. Souza
  • M. R. Rojas
  • A. K. Inoue-Nagata
  • R. L. Gilbertson
Brief Report

Abstract

A new begomovirus species was identified from tomato plants with upward leaf curling and purple vein symptoms, which was first identified in the Piaui state of Northeast (NE) Brazil in 2014. Tomato leaf samples were collected in 2014 and 2016, and PCR with degenerate primers revealed begomovirus infection. Rolling circle amplification and restriction enzyme digestion indicated a single genomic DNA of ~ 2.6 kb. Cloning and sequencing revealed a genome organization similar to DNA-A components of New World (NW) bipartite begomoviruses, with no DNA-B. The complete nucleotide sequence had the highest identity (80%) with the DNA-A of Macroptilium yellow spot virus (MacYSV), and phylogenetic analyses showed it is a NW begomovirus that clusters with MacYSV and Blainvillea yellow spot virus, also from NE Brazil. Tomato plants agroinoculated with a dimeric clone of this genomic DNA developed upward leaf curling and purple vein symptoms, indistinguishable from those observed in the field. Based on agroinoculation, this virus has a narrow host range, mainly within the family Solanaceae. Co-inoculation experiments with tomato severe rugose virus and tomato mottle leaf curl virus, the two predominant begomoviruses infecting tomato in Brazil, revealed a synergistic interaction among these begomoviruses. The name Tomato leaf curl purple vein virus (ToLCPVV) is proposed for this new begomovirus.

Notes

Acknowledgements

We thank Mr. Leonardo da Fonte and Dr. Hasan Bolkan for kindly taking us to tomato fields in Piaui. A. K. Inoue-Nagata is a CNPq fellow.

Compliance with ethical standards

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

This article did not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Barbosa JC, da Silva Barreto SD, Inoue-Nagata AK, Rezende JAM (2011) Characterization and experimental host range of a Brazilian tomato isolate of Tomato severe rugose virus. J Phytopathol 159:644–646CrossRefGoogle Scholar
  2. 2.
    Brown JK, Zerbini FM, Navas-Castillo J, Morinoes E, Ramos-Sorbinho R, Silva JC, Fiallo-Olivé E, Briddon RW, Hernández-Zepeda C, Idris A, Malathi VG, Martin DP, Rivera-Bustamante R, Ueda S, Varsani A (2015) Revision of begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 160:1593–1619CrossRefPubMedGoogle Scholar
  3. 3.
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  4. 4.
    Ferreira P, de T, de O, Lemos TO, Nagata T, Inoue-Nagata AK (2008) One-step cloning approach for construction of agroinfectious begomovirus clones. J Virol Methods 147:351–354CrossRefGoogle Scholar
  5. 5.
    Fiallo-Olivé E, Martínez-Zubiaur Y, Moriones E, Navas-Castillo J (2012) A novel class of DNA satellites associated with New World begomoviruses. Virology 426:1–6CrossRefPubMedGoogle Scholar
  6. 6.
    Fiallo-Olivé E, Tovar R, Navas-Castillo J (2016) Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. New Phytol 212:680–692CrossRefPubMedGoogle Scholar
  7. 7.
    Fuentes A, Carlos N, Ruiz Y et al (2016) Field trial and molecular characterization of RNAi-transgenic tomato plants that exhibit resistance to tomato yellow leaf curl geminivirus. Mol Plant Microbe Interact 29:197–209CrossRefPubMedGoogle Scholar
  8. 8.
    Gilbertson RL, Batuman O, Webster CG, Adkins S (2015) Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu Rev Virol 2:67–93CrossRefPubMedGoogle Scholar
  9. 9.
    Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S (2013) Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 11:777–788CrossRefPubMedGoogle Scholar
  10. 10.
    Harrison BD, Swanson MM, Fargette D (2002) Begomovirus coat protein: serology, variation and functions. Physiol Mol Plant Pathol 60:257–271CrossRefGoogle Scholar
  11. 11.
    Hou Y-M, Paplomatas EJ, Gilbertson RL (1998) Host adaptation and replication properties of two bipartite geminiviruses and their pseudorecombinants. Mol Plant-Microbe Interact 11:208–217CrossRefGoogle Scholar
  12. 12.
    Inoue-Nagata AK, Albuquerque LC, Rocha WB, Nagata T (2004) A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J Virol Methods 116:209–211CrossRefPubMedGoogle Scholar
  13. 13.
    Inoue-Nagata AK, Lima MF, Gilbertson RL (2016) A review of geminivirus diseases in vegetables and other crops in Brazil: current status and approaches for management. Hortic Bras 34:8–18CrossRefGoogle Scholar
  14. 14.
    Lefeuvre P, Martin DP, Harkins G, Lemey P, Gray AJA, Meredith S, Lakay F, Monjane A, Lett JM, Varsani A, Heydarnejad J (2010) The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog 6:e1001164CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lima AT, Sobrinho RR, González-Aguilera J, Rocha CS, Silva SJ, Xavier CA, Silva FN, Duffy S, Zerbini FM (2013) Synonymous site variation due to recombination explains higher genetic variability in begomovirus populations infecting non-cultivated hosts. J Gen Virol 94:418–431CrossRefPubMedGoogle Scholar
  16. 16.
    Martin DP (2009) Recombination detection and analysis using RDP3. Methods Mol Biol 537:185–205CrossRefPubMedGoogle Scholar
  17. 17.
    Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM, Gilbertson RL (2013) Characterization of a new world monopartite begomovirus causing leaf curl disease of tomato in Ecuador and Peru reveals a new direction in geminivirus evolution. J Virol 87:5397–5413CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Morales FJ (2010) Distribution and dissemination of begomoviruses in Latin America and the Caribbean. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics management of a global Pest. Springer, Dordrecht, pp 283–318Google Scholar
  19. 19.
    Muhire BM, Varsani A, Martin DP (2014) SDT: a virus classification tool based on pairwise sequence alignment and identity calculation. PLoS One 26:e108277CrossRefGoogle Scholar
  20. 20.
    Navas-Castillo J, Fiallo-Olivé E, Sánchez-Campos S (2011) Emerging virus diseases transmitted by whiteflies. Annu Rev Phytopathol 49:219–248CrossRefPubMedGoogle Scholar
  21. 21.
    Rambaut ADA (2010) Tree annotator version 1.6.1 (computer program). http://beast.bio.ed.ac.uk. Accessed 1 Aug 2010
  22. 22.
    Rojas MR, Gilbertson RL, Russell DR, Maxwell DP (1993) Use of degenerate primers in the polymerase chain reaction to detect whitefly-transmitted geminiviruses. Plant Dis 77:340–347CrossRefGoogle Scholar
  23. 23.
    Rojas MR, Hagen C, Lucas WJ, Gilbertson RL (2005) Exploiting chinks in the plant’s armor: evolution and emergence of geminiviruses. Annu Rev Phytopathol 43:361–394CrossRefPubMedGoogle Scholar
  24. 24.
    Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Farich BA, Santana-Magal N, Elimelech M, Kontsedalov S, Lebedev G, Cilia M, Ghanim M (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8CrossRefPubMedGoogle Scholar
  26. 26.
    Salati R, Nahkla MK, Rojas MR, Guzman P, Jaquez J, Maxwell DP, Gilbertson RL (2002) Tomato yellow leaf curl virus in the Dominican Republic: characterization of an infectious clone, virus monitoring in whiteflies, and identification of reservoir hosts. Phytopathology 92:487–496CrossRefPubMedGoogle Scholar
  27. 27.
    Sánchez-Campos S, Martínez-Ayala A, Márquez-Martín B, Aragon-Caballero L, Navas-Castillo J, Moriones E (2013) Fulfilling Koch’s postulates confirms the monopartite nature of tomato leaf deformation virus: a begomovirus native to the New World. Virus Res 173:286–293CrossRefPubMedGoogle Scholar
  28. 28.
    Silva SJC, Castillo-Urquiza GP, Hora-Júnior BT, Assunção IP, Lima GSA, Pio-Ribeiro G, Mizubuti ESG, Zerbini FM (2012) Species diversity, phylogeny and genetic variability of begomovirus populations infecting leguminous weeds in northeastern Brazil. Plant Pathol 61:457–467CrossRefGoogle Scholar
  29. 29.
    Sobrinho RR, Xavier CA, Pereira HM, Lima GS, Assunção IP, Mizubuti ES, Duffy S, Zerbini FM (2014) Contrasting genetic structure between two begomoviruses infecting the same leguminous hosts. J Gen Virol 95:2540–2552CrossRefPubMedGoogle Scholar
  30. 30.
    Tamura K, Peterson D, Peterson N, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vu S, Melgarejo TA, Chen L, Souza JO, Macedo MA, Inoue-Nagata AK, Gilbertson RL (2015) Evidence that tomato mottle leaf curl virus from Northeastern Brazil is an indigenous New World monopartite begomovirus. Phytopathology 105:S4.143Google Scholar
  32. 32.
    Zerbini FM, Briddon RW, Idris A, Martin DP, Moriones E, Navas-Castillo J, Rivera-Bustamante R, Rougmagnac P, Varsani A, ICTV Report Consortium (2017) ICTV Virus Taxonomy Profile : Geminiviridae. J Gen Virol 98:131–133CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhou X (2013) Advances in understanding begomovirus satellites. Annu Rev Phytopathol 51:357–381CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • M. A. Macedo
    • 1
    • 2
  • L. C. Albuquerque
    • 3
  • M. R. Maliano
    • 2
  • J. O. Souza
    • 2
  • M. R. Rojas
    • 2
  • A. K. Inoue-Nagata
    • 1
    • 4
  • R. L. Gilbertson
    • 2
  1. 1.Department of Plant PathologyUniversity of BrasiliaFederal DistrictBrazil
  2. 2.Department of Plant PathologyUniversity of CaliforniaDavisUSA
  3. 3.Federal Institute of Education, Science and Technology GoianoGoiasBrazil
  4. 4.Embrapa VegetablesFederal DistrictBrazil

Personalised recommendations