Advertisement

Archives of Virology

, Volume 163, Issue 3, pp 623–632 | Cite as

Porcine teschovirus 2 induces an incomplete autophagic response in PK-15 cells

  • Yuanxing Gu
  • Yingshan Zhou
  • Xinfeng Shi
  • Yongping Xin
  • Ying Shan
  • Cong Chen
  • Tong Cao
  • Weihuan Fang
  • Xiaoliang Li
Original Article

Abstract

Autophagy is a homeostatic process that has been shown to be vital in the innate immune defense against pathogens. However, little is known about the regulatory role of autophagy in porcine teschovirus 2 (PTV-2) replication. In this study, we found that PTV-2 infection induces a strong increase in GFP-LC3 punctae and endogenous LC3 lipidation. However, PTV-2 infection did not enhance autophagic protein degradation. When cellular autophagy was pharmacologically inhibited by wortmannin or 3-methyladenine, PTV-2 replication increased. The increase in virus yield via autophagy inhibition was further confirmed by silencing atg5, which is required for autophagy. Furthermore, PTV-2 replication was suppressed when autophagy was activated by rapamycin. Together, the results suggest that PTV-2 infection activates incomplete autophagy and that autophagy then inhibits further PTV-2 replication.

Notes

Acknowledgements

This work is partly supported by the important agriculture subject fund from Department of S&T of Zhejiang Province (2015C02044), Department of Education of Zhejiang Province (Y201635576), the Agricultural Technology Extension Funds of Zhejiang University, Dabei Agricultural Discipline Development and Talent Training Fund (2017ZDNT004), and three rural six party funds for Xiaoliang Li.

Compliance with ethical standards

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

All animal studies were approved by the Animal Care and Use Committee of Zhejiang University in accordance with the Chinese guidelines for the care and use of laboratory animals (Permit Number: 2016101098).

Supplementary material

705_2017_3652_MOESM1_ESM.pdf (212 kb)
Supplementary material 1 (PDF 212 kb)

References

  1. 1.
    Knowles NJ, Hovi T, Hyypiä T (2012) Family Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier, San Diego, pp 855–880Google Scholar
  2. 2.
    Chiu SC, Hu SC, Chang CC, Chang CY, Huang CC, Pang VF, Wang FI (2012) The role of porcine teschovirus in causing diseases in endemically infected pigs. Vet Microbiol 161:88–95CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai ATH, Kuo CC, Kuo YC, Yang JL, Chang CY, Wang FI (2016) The urinary shedding of porcine teschovirus in endemic field situations. Vet Microbiol 182:150–155CrossRefPubMedGoogle Scholar
  4. 4.
    Chiu SC, Yang CL, Chen YM, Hu SC, Chiu KC, Lin YC, Chang CY, Wang FI (2014) Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet Microbiol 168:69–77CrossRefPubMedGoogle Scholar
  5. 5.
    Jones TH, Muehlhauser V (2017) F-coliphages, porcine adenovirus and porcine teschovirus as potential indicator viruses of fecal contamination for pork carcass processing. Int J Food Microbiol 241:237–243CrossRefPubMedGoogle Scholar
  6. 6.
    Wang B, Tian Z-J, Gong D-Q, Li D-Y, Wang Y, Chen J-Z, An T-Q, Peng J-M, Tong G-Z (2010) Isolation of serotype 2 porcine teschovirus in China: evidence of natural recombination. Vet Microbiol 146:138–143CrossRefPubMedGoogle Scholar
  7. 7.
    Jackson WT (2015) Viruses and the autophagy pathway. Virology 479:450–456CrossRefPubMedGoogle Scholar
  8. 8.
    Orvedahl A, MacPherson S, Sumpter R, Tallóczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35CrossRefPubMedGoogle Scholar
  10. 10.
    McKnight KL, Lemon SM (2017) Virology: Ins and outs of picornaviruses. Nature 541:299–300CrossRefPubMedGoogle Scholar
  11. 11.
    Lai JK, Sam I, Chan YF (2016) The autophagic machinery in enterovirus infection. Viruses 8:32CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Zhu B, Xu F, Li J, Shuai J, Li X, Fang W (2012) Porcine circovirus type 2 explores the autophagic machinery for replication in PK-15 cells. Virus Res 163:476–485CrossRefPubMedGoogle Scholar
  13. 13.
    Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M, Zhou J (2015) Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy 11:503–515CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Levine B, Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci USA 114:201–205CrossRefPubMedGoogle Scholar
  15. 15.
    Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16:1014CrossRefPubMedGoogle Scholar
  16. 16.
    Kang Y, Yuan R, Xiang B, Zhao X, Gao P, Dai X, Liao M, Ren T (2017) Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses in vitro and in vivo. Oncotarget.  https://doi.org/10.18632/oncotarget.18169 Google Scholar
  17. 17.
    Cheng J-H, Sun Y-J, Zhang F-Q, Zhang X-R, Qiu X-S, Yu L-P, Wu Y-T, Ding C (2016) Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci Rep 6:24721CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy Benefits the Replication of Newcastle Disease Virus in Chicken Cells and Tissues. J Virol 88:525–537CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Green AM, Beatty PR, Hadjilaou A, Harris E (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426:1148–1160CrossRefPubMedGoogle Scholar
  20. 20.
    Jin R, Zhu W, Cao S, Chen R, Jin H, Liu Y, Wang S, Wang W, Xiao G (2013) Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One 8:e52909CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li J-K, Liang J-J, Liao C-L, Lin Y-L (2012) Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes Infect 14:159–168CrossRefPubMedGoogle Scholar
  22. 22.
    Chan ST, Lee J, Narula M, Ou J-HJ (2016) Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. J Virol 90:10928–10935CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dreux M, Chisari F (2009) Autophagy proteins promote hepalitis C virus replication. Autophagy 5:1224–1225CrossRefPubMedGoogle Scholar
  24. 24.
    Tallóczy Z, Virgin I, Herbert Levine B (2006) PKR-dependent xenophagic degradation of herpes simplex virus type 1. Autophagy 2:24–29CrossRefPubMedGoogle Scholar
  25. 25.
    Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577CrossRefPubMedGoogle Scholar
  26. 26.
    Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M, Yuan J, Kirkegaard K (2013) Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87:1312–1321CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Richards AL, Jackson WT (2013) Behind closed membranes: the secret lives of picornaviruses? PLoS Pathog 9:e1003262CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS (2009) Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol 81:1241–1252CrossRefPubMedGoogle Scholar
  29. 29.
    O’donnell V, Pacheco JM, LaRocco M, Burrage T, Jackson W, Rodriguez LL, Borca MV, Baxt B (2011) Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410:142–150CrossRefPubMedGoogle Scholar
  30. 30.
    Berryman S, Brooks E, Burman A, Hawes P, Roberts R, Netherton C, Monaghan P, Whelband M, Cottam E, Elazar Z (2012) Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway. J Virol 86:12940–12953CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhang Y, Li Z, Ge X, Guo X, Yang H (2011) Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy 7:613–628CrossRefPubMedGoogle Scholar
  32. 32.
    Bird SW, Maynard ND, Covert MW, Kirkegaard K (2014) Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci USA 111:13081–13086CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Quiner CA, Jackson WT (2010) Fragmentation of the Golgi apparatus provides replication membranes for human rhinovirus 1A. Virology 407:185–195CrossRefPubMedGoogle Scholar
  34. 34.
    Delorme-Axford E, Morosky S, Bomberger J, Stolz DB, Jackson WT, Coyne CB (2014) BPIFB3 regulates autophagy and coxsackievirus B replication through a noncanonical pathway independent of the core initiation machinery. MBio 5:e02114–e02147CrossRefGoogle Scholar
  35. 35.
    Taylor MP, Kirkegaard K (2008) Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4:286–289CrossRefPubMedGoogle Scholar
  36. 36.
    Münz C (2016) Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol 37:755–763CrossRefPubMedGoogle Scholar
  37. 37.
    Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145CrossRefPubMedGoogle Scholar
  38. 38.
    O’Connell D, Liang C (2016) Autophagy interaction with herpes simplex virus type-1 infection. Autophagy 12:451–459CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Gladue D, O’donnell V, Baker-Branstetter R, Holinka L, Pacheco J, Fernandez-Sainz I, Lu Z, Brocchi E, Baxt B, Piccone M (2012) Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J Virol 86:12080–12090CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cherry S, Kunte A, Wang H, Coyne C, Rawson RB, Perrimon N (2006) COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog 2:e102CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777CrossRefPubMedGoogle Scholar
  44. 44.
    Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM (2017) Role of autophagy in HIV infection and pathogenesis. J Intern Med 281:422–432CrossRefPubMedGoogle Scholar
  45. 45.
    Shoji-Kawata S, Sumpter R Jr, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D (2013) Identification of a candidate therapeutic autophagy–inducing peptide. Nature 494:201CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Yuanxing Gu
    • 1
    • 2
  • Yingshan Zhou
    • 1
    • 3
  • Xinfeng Shi
    • 4
  • Yongping Xin
    • 1
  • Ying Shan
    • 1
  • Cong Chen
    • 1
  • Tong Cao
    • 1
  • Weihuan Fang
    • 1
  • Xiaoliang Li
    • 1
  1. 1.Institute of Preventive Veterinary Medicine, Zhejiang UniversityHangzhouChina
  2. 2.Qingdao Agricultural UniversityQingdaoChina
  3. 3.College of Animal Science and Technology, China-Australia Joint-Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet TechnologyZhejiang A&F UniversityLin’anChina
  4. 4.Animal Products Quality Testing Center of Zhejiang ProvinceHangzhouChina

Personalised recommendations