Skip to main content
Log in

Porcine teschovirus 2 induces an incomplete autophagic response in PK-15 cells

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Autophagy is a homeostatic process that has been shown to be vital in the innate immune defense against pathogens. However, little is known about the regulatory role of autophagy in porcine teschovirus 2 (PTV-2) replication. In this study, we found that PTV-2 infection induces a strong increase in GFP-LC3 punctae and endogenous LC3 lipidation. However, PTV-2 infection did not enhance autophagic protein degradation. When cellular autophagy was pharmacologically inhibited by wortmannin or 3-methyladenine, PTV-2 replication increased. The increase in virus yield via autophagy inhibition was further confirmed by silencing atg5, which is required for autophagy. Furthermore, PTV-2 replication was suppressed when autophagy was activated by rapamycin. Together, the results suggest that PTV-2 infection activates incomplete autophagy and that autophagy then inhibits further PTV-2 replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Knowles NJ, Hovi T, Hyypiä T (2012) Family Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Classification and nomenclature of viruses: ninth report of the international committee on taxonomy of viruses. Elsevier, San Diego, pp 855–880

    Google Scholar 

  2. Chiu SC, Hu SC, Chang CC, Chang CY, Huang CC, Pang VF, Wang FI (2012) The role of porcine teschovirus in causing diseases in endemically infected pigs. Vet Microbiol 161:88–95

    Article  PubMed  Google Scholar 

  3. Tsai ATH, Kuo CC, Kuo YC, Yang JL, Chang CY, Wang FI (2016) The urinary shedding of porcine teschovirus in endemic field situations. Vet Microbiol 182:150–155

    Article  PubMed  Google Scholar 

  4. Chiu SC, Yang CL, Chen YM, Hu SC, Chiu KC, Lin YC, Chang CY, Wang FI (2014) Multiple models of porcine teschovirus pathogenesis in endemically infected pigs. Vet Microbiol 168:69–77

    Article  CAS  PubMed  Google Scholar 

  5. Jones TH, Muehlhauser V (2017) F-coliphages, porcine adenovirus and porcine teschovirus as potential indicator viruses of fecal contamination for pork carcass processing. Int J Food Microbiol 241:237–243

    Article  CAS  PubMed  Google Scholar 

  6. Wang B, Tian Z-J, Gong D-Q, Li D-Y, Wang Y, Chen J-Z, An T-Q, Peng J-M, Tong G-Z (2010) Isolation of serotype 2 porcine teschovirus in China: evidence of natural recombination. Vet Microbiol 146:138–143

    Article  CAS  PubMed  Google Scholar 

  7. Jackson WT (2015) Viruses and the autophagy pathway. Virology 479:450–456

    Article  PubMed  Google Scholar 

  8. Orvedahl A, MacPherson S, Sumpter R, Tallóczy Z, Zou Z, Levine B (2010) Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7:115–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34. 5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35

    Article  CAS  PubMed  Google Scholar 

  10. McKnight KL, Lemon SM (2017) Virology: Ins and outs of picornaviruses. Nature 541:299–300

    Article  CAS  PubMed  Google Scholar 

  11. Lai JK, Sam I, Chan YF (2016) The autophagic machinery in enterovirus infection. Viruses 8:32

    Article  PubMed Central  Google Scholar 

  12. Zhu B, Xu F, Li J, Shuai J, Li X, Fang W (2012) Porcine circovirus type 2 explores the autophagic machinery for replication in PK-15 cells. Virus Res 163:476–485

    Article  CAS  PubMed  Google Scholar 

  13. Hu B, Zhang Y, Jia L, Wu H, Fan C, Sun Y, Ye C, Liao M, Zhou J (2015) Binding of the pathogen receptor HSP90AA1 to avibirnavirus VP2 induces autophagy by inactivating the AKT-MTOR pathway. Autophagy 11:503–515

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levine B, Klionsky DJ (2017) Autophagy wins the 2016 Nobel Prize in Physiology or Medicine: Breakthroughs in baker’s yeast fuel advances in biomedical research. Proc Natl Acad Sci USA 114:201–205

    Article  CAS  PubMed  Google Scholar 

  15. Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T (2015) Autophagy and autophagy-related proteins in the immune system. Nat Immunol 16:1014

    Article  CAS  PubMed  Google Scholar 

  16. Kang Y, Yuan R, Xiang B, Zhao X, Gao P, Dai X, Liao M, Ren T (2017) Newcastle disease virus-induced autophagy mediates antiapoptotic signaling responses in vitro and in vivo. Oncotarget. https://doi.org/10.18632/oncotarget.18169

    Google Scholar 

  17. Cheng J-H, Sun Y-J, Zhang F-Q, Zhang X-R, Qiu X-S, Yu L-P, Wu Y-T, Ding C (2016) Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci Rep 6:24721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun Y, Yu S, Ding N, Meng C, Meng S, Zhang S, Zhan Y, Qiu X, Tan L, Chen H, Song C, Ding C (2014) Autophagy Benefits the Replication of Newcastle Disease Virus in Chicken Cells and Tissues. J Virol 88:525–537

    Article  PubMed  PubMed Central  Google Scholar 

  19. Green AM, Beatty PR, Hadjilaou A, Harris E (2014) Innate immunity to dengue virus infection and subversion of antiviral responses. J Mol Biol 426:1148–1160

    Article  CAS  PubMed  Google Scholar 

  20. Jin R, Zhu W, Cao S, Chen R, Jin H, Liu Y, Wang S, Wang W, Xiao G (2013) Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One 8:e52909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li J-K, Liang J-J, Liao C-L, Lin Y-L (2012) Autophagy is involved in the early step of Japanese encephalitis virus infection. Microbes Infect 14:159–168

    Article  CAS  PubMed  Google Scholar 

  22. Chan ST, Lee J, Narula M, Ou J-HJ (2016) Suppression of Host Innate Immune Response by Hepatitis C Virus via Induction of Autophagic Degradation of TRAF6. J Virol 90:10928–10935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dreux M, Chisari F (2009) Autophagy proteins promote hepalitis C virus replication. Autophagy 5:1224–1225

    Article  PubMed  Google Scholar 

  24. Tallóczy Z, Virgin I, Herbert Levine B (2006) PKR-dependent xenophagic degradation of herpes simplex virus type 1. Autophagy 2:24–29

    Article  PubMed  Google Scholar 

  25. Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar S (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567–577

    Article  CAS  PubMed  Google Scholar 

  26. Mateo R, Nagamine CM, Spagnolo J, Méndez E, Rahe M, Gale M, Yuan J, Kirkegaard K (2013) Inhibition of cellular autophagy deranges dengue virion maturation. J Virol 87:1312–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richards AL, Jackson WT (2013) Behind closed membranes: the secret lives of picornaviruses? PLoS Pathog 9:e1003262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang SC, Chang CL, Wang PS, Tsai Y, Liu HS (2009) Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol 81:1241–1252

    Article  CAS  PubMed  Google Scholar 

  29. O’donnell V, Pacheco JM, LaRocco M, Burrage T, Jackson W, Rodriguez LL, Borca MV, Baxt B (2011) Foot-and-mouth disease virus utilizes an autophagic pathway during viral replication. Virology 410:142–150

    Article  PubMed  Google Scholar 

  30. Berryman S, Brooks E, Burman A, Hawes P, Roberts R, Netherton C, Monaghan P, Whelband M, Cottam E, Elazar Z (2012) Foot-and-mouth disease virus induces autophagosomes during cell entry via a class III phosphatidylinositol 3-kinase-independent pathway. J Virol 86:12940–12953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Li Z, Ge X, Guo X, Yang H (2011) Autophagy promotes the replication of encephalomyocarditis virus in host cells. Autophagy 7:613–628

    Article  CAS  PubMed  Google Scholar 

  32. Bird SW, Maynard ND, Covert MW, Kirkegaard K (2014) Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci USA 111:13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Quiner CA, Jackson WT (2010) Fragmentation of the Golgi apparatus provides replication membranes for human rhinovirus 1A. Virology 407:185–195

    Article  CAS  PubMed  Google Scholar 

  34. Delorme-Axford E, Morosky S, Bomberger J, Stolz DB, Jackson WT, Coyne CB (2014) BPIFB3 regulates autophagy and coxsackievirus B replication through a noncanonical pathway independent of the core initiation machinery. MBio 5:e02114–e02147

    Article  Google Scholar 

  35. Taylor MP, Kirkegaard K (2008) Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4:286–289

    Article  CAS  PubMed  Google Scholar 

  36. Münz C (2016) Autophagy beyond intracellular MHC class II antigen presentation. Trends Immunol 37:755–763

    Article  PubMed  Google Scholar 

  37. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun J-A, Outzen H, Øvervatn A, Bjørkøy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145

    Article  CAS  PubMed  Google Scholar 

  38. O’Connell D, Liang C (2016) Autophagy interaction with herpes simplex virus type-1 infection. Autophagy 12:451–459

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gladue D, O’donnell V, Baker-Branstetter R, Holinka L, Pacheco J, Fernandez-Sainz I, Lu Z, Brocchi E, Baxt B, Piccone M (2012) Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J Virol 86:12080–12090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dong X, Levine B (2013) Autophagy and viruses: adversaries or allies? J Innate Immun 5:480–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cherry S, Kunte A, Wang H, Coyne C, Rawson RB, Perrimon N (2006) COPI activity coupled with fatty acid biosynthesis is required for viral replication. PLoS Pathog 2:e102

    Article  PubMed  PubMed Central  Google Scholar 

  43. Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    Article  CAS  PubMed  Google Scholar 

  44. Nardacci R, Ciccosanti F, Marsella C, Ippolito G, Piacentini M, Fimia GM (2017) Role of autophagy in HIV infection and pathogenesis. J Intern Med 281:422–432

    Article  CAS  PubMed  Google Scholar 

  45. Shoji-Kawata S, Sumpter R Jr, Leveno M, Campbell GR, Zou Z, Kinch L, Wilkins AD, Sun Q, Pallauf K, MacDuff D (2013) Identification of a candidate therapeutic autophagy–inducing peptide. Nature 494:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the important agriculture subject fund from Department of S&T of Zhejiang Province (2015C02044), Department of Education of Zhejiang Province (Y201635576), the Agricultural Technology Extension Funds of Zhejiang University, Dabei Agricultural Discipline Development and Talent Training Fund (2017ZDNT004), and three rural six party funds for Xiaoliang Li.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoliang Li.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Ethical approval

All animal studies were approved by the Animal Care and Use Committee of Zhejiang University in accordance with the Chinese guidelines for the care and use of laboratory animals (Permit Number: 2016101098).

Additional information

Handling Editor Zhenhai Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 212 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Zhou, Y., Shi, X. et al. Porcine teschovirus 2 induces an incomplete autophagic response in PK-15 cells. Arch Virol 163, 623–632 (2018). https://doi.org/10.1007/s00705-017-3652-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3652-2

Navigation