Advertisement

Archives of Virology

, Volume 163, Issue 3, pp 575–586 | Cite as

Pharmacophoric characteristics of dengue virus NS2B/NS3pro inhibitors: a systematic review of the most promising compounds

  • Camyla Alves Leonel
  • William Gustavo Lima
  • Michelli dos Santos
  • Ariane Coelho Ferraz
  • Alex Gutterres Taranto
  • José Carlos de Magalhães
  • Luciana Lara dos Santos
  • Jaqueline Maria Siqueira Ferreira
Review

Abstract

Dengue virus (DENV) infection can lead to a wide range of clinical manifestations, including fatal hemorrhagic complications. There is a need to find effective pharmacotherapies to treat this disease due to the lack of specific immunotherapies and antiviral drugs. That said, the DENV NS2B/NS3pro protease complex is essential in both the viral multiplication cycle and in disease pathogenesis, and is considered a promising target for new antiviral therapies. Here, we performed a systematic review to evaluate the pharmacophoric characteristics of promising compounds against NS2B/NS3pro reported in the past 10 years. Online searches in the PUBMED/MEDLINE and SCOPUS databases resulted in 165 articles. Eight studies, which evaluated 3,384,268 molecules exhibiting protease inhibition activity, were included in this review. These studies evaluated anti-dengue activity in vitro and the IC50 and EC50 values were provided. Most compounds exhibited non-competitive inhibition. Cytotoxicity was evaluated in BHK-21, Vero, and LLC-MK2 cells, and the CC50 values obtained ranged from < 1.0 to 780.5 µM. Several groups were associated with biological activity against dengue, including nitro, catechol, halogen and ammonium quaternaries. Thus, these groups seem to be potential pharmacophores that can be further investigated to treat dengue infections.

Notes

Acknowledgements

W.G.L and C.A.L are grateful to FAPEMIG for master’s degree fellowship.

Compliance with ethical standards

Funding

This study was funded by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (UNIVERSAL 446997/2014-5 and 449984/2014-1) and Fundação de Amparo a Pesquisa de Minas Gerais (FAPEMIG) (EDITAL APQ-00557-14).

Conflict of interest

All authors report that they do not have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Wu D, Mao F, Ye Y et al (2015) Policresulen, a novel NS2B/NS3 protease inhibitor, effectively inhibits the replication of DENV2 virus in BHK-21 cells. Acta Pharmacol Sin 36:1126–1136.  https://doi.org/10.1038/aps.2015.56 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guzman MG, Harris E (2015) Dengue. Lancet 385:453–465.  https://doi.org/10.1016/S0140-6736(14)60572-9 CrossRefPubMedGoogle Scholar
  3. 3.
    Bhatt S, Gething PW, Brady OJ et al (2013) The global distribution and burden of dengue. Nature 496:504–507.  https://doi.org/10.1038/nature12060 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Iturbe-Ormaetxe I, Walker T, O’ Neill SL (2011) Wolbachia and the biological control of mosquito-borne disease. EMBO Rep 12:508–518.  https://doi.org/10.1038/embor.2011.84 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Martin J, Hermida L (2016) Dengue vaccine: an update on recombinant subunit strategies. Acta Virol 60:3–14.  https://doi.org/10.4149/av_2016_01_3 CrossRefPubMedGoogle Scholar
  6. 6.
    Torresi J, Ebert G, Pellegrini M (2017) Vaccines licensed and in clinical trials for the prevention of dengue. Hum Vaccin Immunother.  https://doi.org/10.1080/21645515.2016.1261770 PubMedPubMedCentralGoogle Scholar
  7. 7.
    McDowell M, Gonzales SR, Kumarapperuma SC et al (2010) A novel nucleoside analog, 1-beta-d-ribofuranosyl-3-ethynyl-[1, 2, 4]triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antivir Res 87:78–80.  https://doi.org/10.1016/j.antiviral.2010.04.007 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    World Health Organization (2012) Global strategy for dengue prevention and control 2012–2020. WHO, Geneva, pp 1–43Google Scholar
  9. 9.
    Flipse J, Smit JM (2015) The complexity of a dengue vaccine: a review of the human antibody response. PLoS Negl Trop Dis 9:e0003749.  https://doi.org/10.1371/journal.pntd.0003749 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Natarajan S (2010) NS3 protease from flavivirus as a target for designing antiviral inhibitors against dengue virus. Genet Mol Biol 33:214–219.  https://doi.org/10.1590/S1415-47572010000200002 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang YM, Hayes EP, McCarty TC et al (1988) Immunization of mice with dengue structural proteins and nonstructural protein NS1 expressed by baculovirus recombinant induces resistance to dengue virus encephalitis. J Virol 62:3027–3031PubMedPubMedCentralGoogle Scholar
  12. 12.
    Clyde K, Kyle JL, Harris E (2006) Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80:11418–11431.  https://doi.org/10.1128/jvi.01257-06 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fauquet CM, Fargette D (2005) International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64.  https://doi.org/10.1186/1743-422X-2-64 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xu T, Sampath A, Chao A et al (2005) Structure of the dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 79:10278–10288.  https://doi.org/10.1128/JVI.79.16.10278-10288.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chambers TJ, Hahn CS, Galler R, Rice CM (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688.  https://doi.org/10.1146/annurev.mi.44.100190.003245 CrossRefPubMedGoogle Scholar
  16. 16.
    Falgout B, Pethel M, Zhang YM, Lai CJ (1991) Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65:2467–2475PubMedPubMedCentralGoogle Scholar
  17. 17.
    Stocks CE, Lobigs M (1998) Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. J Virol 72:2141–2149PubMedPubMedCentralGoogle Scholar
  18. 18.
    Lescar J, Luo D, Xu T et al (2008) Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from dengue virus as a target. Antivir Res 80:94–101.  https://doi.org/10.1016/j.antiviral.2008.07.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Woestenenk E, Agback P, Unnerståle S et al (2017) Co-refolding of a functional complex of dengue NS3 protease and NS2B co-factor domain and backbone resonance assignment by solution NMR. Protein Expr Purif 140:16–27.  https://doi.org/10.1016/j.pep.2017.07.002 CrossRefPubMedGoogle Scholar
  20. 20.
    Aguilera-Pesantes D, Robayo LE, Méndez PE et al (2017) Discovering key residues of dengue virus NS2b-NS3-protease: new binding sites for antiviral inhibitors design. Biochem Biophys Res Commun.  https://doi.org/10.1016/j.bbrc.2017.03.107 Google Scholar
  21. 21.
    Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806.  https://doi.org/10.1110/ps.072753207 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Erbel P, Schiering N, D’Arcy A et al (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373.  https://doi.org/10.1038/nsmb1073 CrossRefPubMedGoogle Scholar
  23. 23.
    Shannon AE, Chappell KJ, Stoermer MJ et al (2016) Simultaneous uncoupled expression and purification of the dengue virus NS3 protease and NS2B co-factor domain. Protein Expr Purif 119:124–129.  https://doi.org/10.1016/j.pep.2015.11.022 CrossRefPubMedGoogle Scholar
  24. 24.
    Godói IP, Lima WG, Junior MC, José R (2016) Docking and QM/MM studies of NS2B-NS3pro inhibitors: a molecular target against the dengue virus. J Braz Chem Soc.  https://doi.org/10.21577/0103-5053.20160242 Google Scholar
  25. 25.
    Lim SP, Noble CG, Shi P-Y et al (2015) The dengue virus NS5 protein as a target for drug discovery. Antivir Res 119:57–67.  https://doi.org/10.1016/j.antiviral.2015.04.010 CrossRefPubMedGoogle Scholar
  26. 26.
    El Sahili A, Lescar J (2017) Dengue virus non-structural protein 5. Viruses.  https://doi.org/10.3390/v9040091 PubMedPubMedCentralGoogle Scholar
  27. 27.
    De Maio FA, Risso G, Iglesias NG et al (2016) The dengue virus NS5 protein intrudes in the cellular spliceosome and modulates splicing. PLoS Pathog 12:e1005841.  https://doi.org/10.1371/journal.ppat.1005841 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Midde NM, Patters BJ, Rao PSS et al (2016) Investigational protease inhibitors as antiretroviral therapies. Expert Opin Investig Drugs 25:1189–1200.  https://doi.org/10.1080/13543784.2016.1212837 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Frecer V, Miertus S (2010) Design, structure-based focusing and in silico screening of combinatorial library of peptidomimetic inhibitors of dengue virus NS2B-NS3 protease. J Comput Aided Mol Des 24:195–212.  https://doi.org/10.1007/s10822-010-9326-8 CrossRefPubMedGoogle Scholar
  30. 30.
    Takagi Y, Matsui K, Nobori H et al (2017) Discovery of novel cyclic peptide inhibitors of dengue virus NS2B-NS3 protease with antiviral activity. Bioorg Med Chem Lett 27:3586–3590.  https://doi.org/10.1016/j.bmcl.2017.05.027 CrossRefPubMedGoogle Scholar
  31. 31.
    Rodpothong P, Auewarakul P (2012) Positive selection sites in the surface genes of dengue virus: phylogenetic analysis of the interserotypic branches of the four serotypes. Virus Genes 44:408–414.  https://doi.org/10.1007/s11262-011-0709-2 CrossRefPubMedGoogle Scholar
  32. 32.
    Pambudi S, Kawashita N, Phanthanawiboon S et al (2013) A small compound targeting the interaction between nonstructural proteins 2B and 3 inhibits dengue virus replication. Biochem Biophys Res Commun 440:393–398.  https://doi.org/10.1016/j.bbrc.2013.09.078 CrossRefPubMedGoogle Scholar
  33. 33.
    Tomlinson SM, Malmstrom RD, Watowich SJ (2009) New approaches to structure-based discovery of dengue protease inhibitors. Infect Disord Drug Targets 9:327–343.  https://doi.org/10.2174/1871526510909030327 CrossRefPubMedGoogle Scholar
  34. 34.
    Yang C-C, Hsieh Y-C, Lee S-J et al (2011) Novel dengue virus-specific NS2B/NS3 protease inhibitor, BP2109, discovered by a high-throughput screening assay. Antimicrob Agents Chemother 55:229–238CrossRefPubMedGoogle Scholar
  35. 35.
    Rothan HA, Bahrani H, Rahman NA, Yusof R (2014) Identification of natural antimicrobial agents to treat dengue infection: in vitro analysis of latarcin peptide activity against dengue virus. BMC Microbiol 14:140.  https://doi.org/10.1186/1471-2180-14-140 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wu H, Bock S, Snitko M et al (2015) Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother 59:1100–1109.  https://doi.org/10.1128/AAC.03543-14 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Balasubramanian A, Manzano M, Teramoto T et al (2016) High-throughput screening for the identification of small-molecule inhibitors of the flaviviral protease. Antivir Res 134:6–16.  https://doi.org/10.1016/j.antiviral.2016.08.014 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Yang C-C, Hu H-S, Wu R-H et al (2014) A novel dengue virus inhibitor, BP13944, discovered by high-throughput screening with dengue virus replicon cells selects for resistance in the viral NS2B/NS3 protease. Antimicrob Agents Chemother 58:110–119.  https://doi.org/10.1128/AAC.01281-13 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Muhamad M, Kee LY, Rahman NA, Yusof R (2010) Antiviral actions of flavanoid-derived compounds on dengue virus type-2. Int J Biol Sci 6:294–302.  https://doi.org/10.7150/ijbs.6.294 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Podvinec M, Lim SP, Schmidt T et al (2010) Novel inhibitors of dengue virus methyltransferase: discovery by in vitro-driven virtual screening on a desktop computer grid. J Med Chem 53:1483–1495.  https://doi.org/10.1021/jm900776m CrossRefPubMedGoogle Scholar
  41. 41.
    Altmann K-H, Gaugaz FZ, Schiess R (2011) Diversity through semisynthesis: the chemistry and biological activity of semisynthetic epothilone derivatives. Mol Divers 15:383–399.  https://doi.org/10.1007/s11030-010-9291-0 CrossRefPubMedGoogle Scholar
  42. 42.
    Erwin ME, Varnam D, Jones RN (1997) In vitro antimicrobial activity of RU-59863, a C-7 catechol substituted cephalosporin. Diagn Microbiol Infect Dis 28:93–100.  https://doi.org/10.1016/S0732-8893(97)00004-7 CrossRefPubMedGoogle Scholar
  43. 43.
    Maurin C, Bailly F, Mbemba G et al (2006) Design, synthesis, and anti-integrase activity of catechol-DKA hybrids. Bioorg Med Chem 14:2978–2984.  https://doi.org/10.1016/j.bmc.2005.12.039 CrossRefPubMedGoogle Scholar
  44. 44.
    Hoegy F, Gwynn MN, Schalk IJ (2010) Susceptibility of Pseudomonas aeruginosa to catechol-substituted cephalosporin is unrelated to the pyochelin-Fe transporter FptA. Amino Acids 38:1627–1629.  https://doi.org/10.1007/s00726-009-0353-5 CrossRefPubMedGoogle Scholar
  45. 45.
    Bozzini T, Botta G, Delfino M et al (2013) Tyrosinase and layer-by-layer supported tyrosinases in the synthesis of lipophilic catechols with antiinfluenza activity. Bioorg Med Chem 21:7699–7708.  https://doi.org/10.1016/j.bmc.2013.10.026 CrossRefPubMedGoogle Scholar
  46. 46.
    Corona A, Desantis J, Massari S et al (2016) Studies on cycloheptathiophene-3-carboxamide derivatives as allosteric HIV-1 ribonuclease H inhibitors. Chem Med Chem 11:1709–1720.  https://doi.org/10.1002/cmdc.201600015 CrossRefPubMedGoogle Scholar
  47. 47.
    Ito A, Kohira N, Bouchillon SK et al (2016) In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother 71:670–677.  https://doi.org/10.1093/jac/dkv402 CrossRefPubMedGoogle Scholar
  48. 48.
    Valle RPC, Falgout B (1998) Mutagenesis of the NS3 protease of dengue virus type 2. J Virol 72:624–632PubMedPubMedCentralGoogle Scholar
  49. 49.
    Kumar D, Judge V, Narang R et al (2010) Benzylidene/2-chlorobenzylidene hydrazides: synthesis, antimicrobial activity, QSAR studies and antiviral evaluation. Eur J Med Chem 45:2806–2816.  https://doi.org/10.1016/j.ejmech.2010.03.002 CrossRefPubMedGoogle Scholar
  50. 50.
    Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635.  https://doi.org/10.1016/j.ejmech.2008.09.029 CrossRefPubMedGoogle Scholar
  51. 51.
    Sharmin N (2006) Computational analyses of NS3 serine protease of dengue virus. Bangladesh J Microbiol 23:107–113.  https://doi.org/10.3329/bjm.v23i2.872 Google Scholar
  52. 52.
    Olivares CI, Sierra-Alvarez R, Abrell L et al (2016) Zebrafish embryo toxicity of anaerobic biotransformation products from the insensitive munitions compound 2,4-dinitroanisole. Environ Toxicol Chem 35:2774–2781.  https://doi.org/10.1002/etc.3446 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Chin MC, Bosquesi PL, Santos JL (2011) A prodrug approach to improve the physico-chemical properties and decrease the genotoxicity of nitro compounds. Curr Pharm Des 17:3515–3526.  https://doi.org/10.2174/138161211798194512 CrossRefGoogle Scholar
  54. 54.
    Godói IP, Taranto MFR, Lima WG et al (2014) NS2B-NS3pro as a molecular target drugs development against dengue (in Portuguese). BBR Biochem Biotechnol Rep 3:16–30CrossRefGoogle Scholar
  55. 55.
    Brycki B, Dega-Szafran Z, Mirska I, Mirska I (2010) Synthesis and antimicrobial activities of some quaternary morpholinium chlorides. Pol J Microbiol 59:49–53PubMedGoogle Scholar
  56. 56.
    Soukup O, Dolezal R, Malinak D et al (2016) Synthesis, antimicrobial evaluation and molecular modeling of 5-hydroxyisoquinolinium salt series; the effect of the hydroxyl moiety. Bioorg Med Chem 24:841–848.  https://doi.org/10.1016/j.bmc.2016.01.006 CrossRefPubMedGoogle Scholar
  57. 57.
    Krátký M, Vinsova J (2013) Antimycobacterial activity of quaternary pyridinium salts and pyridinium N-oxides-review. Curr Pharm Des 19:1343–1355.  https://doi.org/10.2174/138161213804805711 PubMedGoogle Scholar
  58. 58.
    Sokolova AS, Yarovaya OI, Shernyukov AV et al (2013) New quaternary ammonium camphor derivatives and their antiviral activity, genotoxic effects and cytotoxicity. Bioorg Med Chem 21:6690–6698.  https://doi.org/10.1016/j.bmc.2013.08.014 CrossRefPubMedGoogle Scholar
  59. 59.
    Tuladhar E, de Koning MC, Fundeanu I et al (2012) Different virucidal activities of hyperbranched quaternary ammonium coatings on poliovirus and influenza virus. Appl Environ Microbiol 78:2456–2458.  https://doi.org/10.1128/AEM.07738-11 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Purohit AK, Balish MD, Leichty JJ et al (2012) Antiviral activity and synthesis of quaternized promazine derivatives against HSV-1. Bioorg Med Chem Lett 22:5308–5312.  https://doi.org/10.1016/j.bmcl.2012.06.031 CrossRefPubMedGoogle Scholar
  61. 61.
    Aljofan M, Sganga ML, Lo MK et al (2009) Antiviral activity of gliotoxin, gentian violet and brilliant green against Nipah and Hendra virus in vitro. Virol J 6:187.  https://doi.org/10.1186/1743-422X-6-187 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Baron S, Sabados J, McKerlie ML, Coppenhaver DH (1988) Antiviral activity in urine is attributable to ammonium salts. J Biol Regul Homeost Agents 3:67–70Google Scholar
  63. 63.
    Jonkman JHG, Van Bork LE, Wijsbeek J et al (1977) Variations in the bioavailability of thiazinamium methylsulfate. Clin Pharmacol Ther 21:457–463.  https://doi.org/10.1002/cpt1977214457 CrossRefPubMedGoogle Scholar
  64. 64.
    Janhg J, Wijsbeek J, Brouwer SH, Zeeuw RA (1974) Bioavailability of the quaternary ammonium compound thiazinamium methylsulphate (Multergan) after oral and intramuscular administration. J Pharm Pharmacol.  https://doi.org/10.1111/j.2042-7158.1974.tb10085.x Google Scholar
  65. 65.
    Li Y, Liu X-G, Wang H-Y et al (2016) Pharmacokinetic studies of phellodendrine in rat plasma and tissues after intravenous administration using ultra-high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 1029:95–101.  https://doi.org/10.1016/j.jchromb.2016.07.006 CrossRefGoogle Scholar
  66. 66.
    Taylor DB, Nedergaard OA (1965) Relation between structure and action of quaternary ammonium neuromuscular blocking agents. Physiol Rev 45:523–554CrossRefPubMedGoogle Scholar
  67. 67.
    Rao Z, Hu H, Tang J et al (2016) Steroidal ammonium compounds as new neuromuscular blocking agents. Chem Biol Drug Des.  https://doi.org/10.1111/cbdd.12711 Google Scholar
  68. 68.
    Guerrero JL, Daugherty PS, O’Malley MA (2017) Emerging technologies for protease engineering: new tools to clear out disease. Biotechnol Bioeng 114:33–38.  https://doi.org/10.1002/bit.26066 CrossRefPubMedGoogle Scholar
  69. 69.
    Pillaiyar T, Namasivayam V, Manickam M (2016) Macrocyclic hepatitis C virus NS3/4A protease inhibitors: an overview of medicinal chemistry. Curr Med Chem 23:3404–3447.  https://doi.org/10.2174/0929867323666160510122525 CrossRefPubMedGoogle Scholar
  70. 70.
    Behnam MAM, Graf D, Bartenschlager R et al (2015) Discovery of nanomolar dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J Med Chem 58:9354–9370.  https://doi.org/10.1021/acs.jmedchem.5b01441 CrossRefPubMedGoogle Scholar
  71. 71.
    Zu X, Liu Y, Wang S et al (2014) Peptide inhibitor of Japanese encephalitis virus infection targeting envelope protein domain III. Antivir Res 104:7–14.  https://doi.org/10.1016/j.antiviral.2014.01.011 CrossRefPubMedGoogle Scholar
  72. 72.
    Muñoz-Camargo C, Méndez MC, Salazar V et al (2016) Frog skin cultures secrete anti-yellow fever compounds. J Antibiot (Tokyo) 69:783–790.  https://doi.org/10.1038/ja.2016.16 CrossRefGoogle Scholar
  73. 73.
    Vaillant A (2016) Nucleic acid polymers: broad spectrum antiviral activity, antiviral mechanisms and optimization for the treatment of hepatitis B and hepatitis D infection. Antivir Res 133:32–40.  https://doi.org/10.1016/j.antiviral.2016.07.004 CrossRefPubMedGoogle Scholar
  74. 74.
    Carmona-Ribeiro AM, de Melo Carrasco LD (2013) Cationic antimicrobial polymers and their assemblies. Int J Mol Sci 14:9906–9946.  https://doi.org/10.3390/ijms14059906 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ivanenkov YA, Veselov MS, Shakhbazyan AG et al (2016) A comprehensive insight into the chemical space and ADME features of small molecule NS5A inhibitors. Curr Top Med Chem 16:1372–1382.  https://doi.org/10.2174/1568026616666151120113040 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2017

Authors and Affiliations

  • Camyla Alves Leonel
    • 1
  • William Gustavo Lima
    • 1
  • Michelli dos Santos
    • 1
  • Ariane Coelho Ferraz
    • 1
    • 4
  • Alex Gutterres Taranto
    • 3
  • José Carlos de Magalhães
    • 4
  • Luciana Lara dos Santos
    • 2
  • Jaqueline Maria Siqueira Ferreira
    • 1
  1. 1.Laboratório de Microbiologia MédicaCampus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ)DivinópolisBrazil
  2. 2.Laboratório de Biologia MolecularCampus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ)DivinópolisBrazil
  3. 3.Laboratório de Química Farmacêutica MedicinalCampus Centro-Oeste Dona Lindu, Universidade Federal de São João Del Rei (UFSJ)DivinópolisBrazil
  4. 4.Laboratório de Biologia Molecular e Celular, Departamento de Química, Biotecnologia e Engenharia de Bioprocessos (DQBIO)Campus Alto Paraopeba, Universidade Federal de São João Del Rei (UFSJ)Ouro BrancoBrazil

Personalised recommendations