Abstract
Climate change is inherently linked to long-term non-stationary changes in the characteristics and frequency of weather patterns. The present study attempts to identify the statistical changes of weather patterns in Athens Greece, from the comparative assessment of 96-h backward trajectories between historic (1980–2009) and future (2020–2049) climatology derived from the IPCC RCP4.5 and RCP8.5 scenarios. Arrival heights at 750 m, 1500 m, and 3000 m above sea level are considered to account for the impact of the planetary boundary layer and the lower free troposphere. The analysis of the historic period yields 7 dominant patterns for all heights determined independently, with similar spatial characteristics but varying frequency of occurrence. The classification of backward trajectories under future climate using the same historic clusters reveals percentage changes from locally short-distance travelling patterns to longer-distance ones with a predominant northbound direction. As a second experiment, backward trajectories are re-clustered independently reaching again the same type of clusters but with observable changes in the cluster origins and trajectory lengths.
This is a preview of subscription content,
to check access.







Availability of data and material
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.
Code availability
No code was developed in the current study.
References
Ashbaugh LL (1983) A statistical trajectory technique for determining air pollution source regions. J Air Pollut Control Assoc 33(11):1096–1098. https://doi.org/10.1080/00022470.1983.10465702
Ashrafi K, Shafiepour-Motlagh M, Aslemand A, Ghader S (2014) Dust storm simulation over Iran using HYSPLIT. J Environ Health Sci Eng 12(1). https://doi.org/10.1186/2052-336X-12-9
Barnes AP, Santos MS, Garijo C, Mediero L, Prosdocimi I, McCullen N, Kjeldsen TR (2020) Identifying the origins of extreme rainfall using storm track classification. J Hydroinformatics 22(2):296–309. https://doi.org/10.2166/hydro.2019.164. https://iwaponline.com/jh/article/22/2/296/70268/Identifying-the-origins-of-extreme-rainfall-using
Barnes EA, Polvani LM (2015) CMIP5 projections of arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim 28(13):5254–5271. https://doi.org/10.1175/JCLI-D-14-00589.1
Bednorz E (2013) Synoptic conditions of heavy snowfalls in Europe. Geografiska Annaler, Series A: Physical Geography 95(1):67–78. https://doi.org/10.1111/geoa.12001
Borge R, Lumbreras J, Vardoulakis S, Kassomenos P, Rodriguez E (2007) Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters. Atmos Environ 41(21):4434–4450. https://doi.org/10.1016/j.atmosenv.2007.01.053
Bozlaker A, Prospero JM, Fraser MP, Chellam S (2013) Quantifying the contribution of long-range saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis. Environ Sci Technol 47(18):10179–10187. https://doi.org/10.1021/es4015663
Campins J, Genovés A, Jansà A, Guijarro JA, Ramis C (2000) A catalogue and a classification of surface cyclones for the Western Mediterranean. Int J Climatol 20(9):969–984. https://doi.org/10.1002/1097-0088(200007)20:9<969::aid-joc519>3.3.co;2-w
Chang EK, Ma CG, Zheng C, Yau AM (2016) Observed and projected decrease in Northern Hemisphere extratropical cyclone activity in summer and its impacts on maximum temperature. Geophys Res Lett 43(5):2200–2208. https://doi.org/10.1002/2016GL068172
Chen X, Hossain F, Leung LR (2017) Probable maximum precipitation in the U.S. pacific northwest in a changing climate. Water Resour Res 53(11):9600–9622. https://doi.org/10.1002/2017WR021094. http://doi.wiley.com/10.1002/2017WR021094
Coumou D, Di Capua G, Vavrus S, Wang L, Wang S (2018) The influence of Arctic amplification on mid-latitude summer circulation. Nat Commun 9(1):2959. https://doi.org/10.1038/s41467-018-05256-8. http://www.nature.com/articles/s41467-018-05256-8
Cristianini N, Shawe-Taylor J (2000) Support vector machines. in an introduction to support vector machines and other kernel-based learning methods. https://www.cambridge.org/core/books/an-introduction-to-support-vector-machines-and-other-kernelbased-learning-methods/support-vector-machines/DD4EA48AA6C383944EA67BF8A7BEC6CC
Cui J, Pandey Deolal S, Sprenger M, Henne S, Staehelin J, Steinbacher M, Nédélec P (2011) Free tropospheric ozone changes over Europe as observed at Jungfraujoch (1990-2008): An analysis based on backward trajectories. J Geophys Res Atmos 116(10). https://doi.org/10.1029/2010JD015154
Dafka S, Toreti A, Zanis P, Xoplaki E, Luterbacher J (2019) Twenty-first-century changes in the eastern mediterranean etesians and associated midlatitude atmospheric circulation. J Geophys Res Atmos 124(23):12741–12754. https://doi.org/10.1029/2019JD031203
De Foy B, Zavala M, Bei N, Molina LT (2009) Evaluation of WRF mesoscale simulations and particle trajectory analysis for the MILAGRO field campaign. Atmos Chem Phys 9(13):4419–4438. https://doi.org/10.5194/acp-9-4419-2009
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The era-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828
Dimitriou K, Kassomenos P (2015) Three year study of tropospheric ozone with back trajectories at a metropolitan and a medium scale urban area in greece. Sci Total Environ 502:493–501. https://doi.org/10.1016/j.scitotenv.2014.09.072
Durašković P, Tošić I, Unkašević M, Ignjatović L, Dordević D (2012) The dominant contribution on wet deposition of water-soluble main ions in the South-Eastern Adriatic region. Central European J Chem 10(4):1301–1309. https://doi.org/10.2478/s11532-012-0058-6
Ellis AW, Marston ML, Nelson DA (2018) An air mass-derived cool season climatology of synoptically forced Appalachian cold-air damming. Int J Climatol 38(2):530–542. https://doi.org/10.1002/joc.5189
Escudero M, Stein AF, Draxler RR, Querol X, Alastuey A, Castillo S, Avila A (2011) Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model. Atmos Res 99(3-4):518–527. https://doi.org/10.1016/j.atmosres.2010.12.002
European Academies Science Advisory Council (2019) The imperative of climate action to protect human health in Europe. Tech. Rep June
Fleming ZL, Monks PS, Manning AJ (2012) Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmos Res 104-105:1–39. https://doi.org/10.1016/j.atmosres.2011.09.009
Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39(6):n/a–n/a. https://doi.org/10.1029/2012GL051000. http://doi.wiley.com/10.1029/2012GL051000
Gebhart KA, Schichtel BA, Malm WC, Barna MG, Rodriguez MA, Collett JL (2011) Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA. Atmos Environ 45(3):621–633. https://doi.org/10.1016/j.atmosenv.2010.10.035
Govender P, Sivakumar V (2020) Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos Poll Res 11(1):40–56. https://doi.org/10.1016/j.apr.2019.09.009
Graham AM, Pringle KJ, Arnold SR, Pope RJ, Vieno M, Butt EW, Conibear L, Stirling EL, McQuaid JB (2020) Impact of weather types on UK ambient particulate matter concentrations. Atmos Environ X 5. https://doi.org/10.1016/j.aeaoa.2019.100061
Grossi C, Ballester J, Serrano I, Galmarini S, Camacho A, Curcoll R, Morguí JA, Rodò X, Duch MA (2016) Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface 210Pb and 7Be concentrations in southwestern Europe. J Environ Radioact 165:103–114. https://doi.org/10.1016/j.jenvrad.2016.09.011
Harrison RM, Grenfell JL, Peak JD, Clemitshaw KC, Penkett SA, Cape JN, McFadyen GG (2000) Influence of airmass back trajectory upon nitrogen compound composition. Atmos Environ 34 (10):1519–1527. https://doi.org/10.1016/S1352-2310(99)00409-4
Harvey BJ, Shaffrey LC, Woollings TJ (2015) Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks. Clim Dyn 45(9-10):2847–2860. https://doi.org/10.1007/s00382-015-2510-8
Hausfather Z, Drake HF, Abbott T, Schmidt GA (2020) Evaluating the performance of past climate model projections. Geophys Res Lett. 47((1). https://doi.org/10.1029/2019GL085378. https://onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085378
Hazeleger W, Severijns C, Semmler T, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM, Bintanja R, Bougeault P, Caballero R, Ekman AML, Christensen JH, van den Hurk B, Jimenez P, Jones C, Kållberg P, Koenigk T, McGrath R, Miranda P, van Noije T, Palmer T, Parodi JA, Schmith T, Selten F, Storelvmo T, Sterl A, Tapamo H, Vancoppenolle M, Viterbo P, Willén U (2010) EC-Earth. Bull Am Meteorol Soc 91(10):1357–1364. https://doi.org/10.1175/2010BAMS2877.1. https://journals.ametsoc.org/doi/10.1175/2010BAMS2877.1
Heavens NG, Mahowald NM (2013) Studying and projecting climate change with earth system models. Nature Education Knowl 4(5):4
Hernández-Ceballos MA, Adame JA, Bolívar JP, De la Morena BA (2013) Vertical behaviour and meteorological properties of air masses in the southwest of the Iberian Peninsula (1997-2007). Meteorog Atmos Phys 119(3-4):163–175. https://doi.org/10.1007/s00703-012-0225-5
Hondula DM, Sitka L, Davis RE, Knight DB, Gawtry SD, Deaton ML, Lee TR, Normile CP, Stenger PJ (2009) A back-trajectory and air mass climatology for the Northern Shenandoah Valley, USA. Int J Climatol 30(4):569–581. https://doi.org/10.1002/joc.1896. http://doi.wiley.com/10.1002/joc.1896, vol 30
Ioannidou A, Giannakaki E, Manolopoulou M, Stoulos S, Vagena E, Papastefanou C, Gini L, Manenti S, Groppi F (2013) An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy. Atmos Environ 75:163–170. https://doi.org/10.1016/j.atmosenv.2013.04.008
James G, Witten D, Hastie T, Tibshirani R (2000) An introduction to statistical learning. 7 https://doi.org/10.1007/978-1-4614-7138-7, arXiv:1011.1669v3
Jorba O, Pérez C, Rocadenbosch F, Baldasano JM (2004) Cluster analysis of 4-day back trajectories arriving in the Barcelona area, Spain, from 1997 to 2002. J Appl Meteorol 43(6):887– 901. https://doi.org/10.1175/1520-0450(2004)043<0887:CAODBT>2.0.CO;2
Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means clustering algorithm: analysis and implementation. IEEE TPAMI 24(7):881–892. https://doi.org/10.1109/tpami.2002.1017616
Kassomenos P, Vardoulakis S, Borge R, Lumbreras J, Papaloukas C, Karakitsios S (2009) Comparison of statistical clustering techniques for the classification of modelled atmospheric trajectories. Theo Appl Climatol 102(1-2):1–12. https://doi.org/10.1007/s00704-009-0233-7
Kim DJ, Park YW, Park DJ (2001) A novel validity index for determination of the optimal number of clusters. IEICE Trans Inf Syst E84-D(2):281–285. https://search.ieice.org/bin/summary.php?id=e84-d_2_281&category=D&year=2001&lang=E&abst=
Klampanos IA, Davvetas A, Andronopoulos S, Pappas C, Ikonomopoulos A, Karkaletsis V (2018) Autoencoder-driven weather clustering for source estimation during nuclear events. Environ Model Softw 102:84–93. https://doi.org/10.1016/j.envsoft.2018.01.014
Koenigk T, Brodeau L, Graversen RG, Karlsson J, Svensson G, Tjernström M, Willén U, Wyser K (2013) Arctic climate change in 21st century CMIP5 simulations with EC-Earth. Clim Dyn 40(11-12):2719–2743. https://doi.org/10.1007/s00382-012-1505-y
Kulshrestha U, Kumar B (2014) Airmass trajectories and long range transport of pollutants: review of wet deposition scenario in South Asia. Adv Meteorol 2014. https://doi.org/10.1155/2014/596041
Lutz AF, ter Maat HW, Biemans H, Shrestha AB, Wester P, Immerzeel WW (2016) Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int J Climatol 36(12):3988–4005. https://doi.org/10.1002/joc.4608
Makra L, Matyasovszky I, Guba Z, Karatzas K, Anttila P (2011) Monitoring the long-range transport effects on urban PM10 levels using 3D clusters of backward trajectories. Atmos Environ 45(16):2630–2641. https://doi.org/10.1016/j.atmosenv.2011.02.068
Markou MT, Kassomenos P (2010) Cluster analysis of five years of back trajectories arriving in Athens, Greece. Atmos Res 98(2-4):438–457. https://doi.org/10.1016/j.atmosres.2010.08.006
Mattsson S, Vesanen R (1988) Patterns of Chernobyl fallout in relation to local weather conditions. Environ Int 14(2):177–180. https://doi.org/10.1016/0160-4120(88)90092-x
Melillo, JM, Richmond, TC, Yohe, GW (eds) (2014) Climate change impacts in the United States: the third national climate assessment. U.S. Global Change Research Program, Weather/Trajectories, vol 841, pp 841. ISBN 9780160924026. https://nca2014.globalchange.gov/downloads
Metaxas DA, Bartzokas A (1994) Pressure covariability over the Atlantic, Europe and N. Africa. application: centers of action for temperature, winter precipitation and summer winds in Athens, Greece. Theor Appl Climatol 49(1):9–18. https://doi.org/10.1007/BF00866284
Mirzabaev A, Wu J, Evans J, Garci-Oliva F, Hussein IAG, Iqbal MH, Kimutai J, Knowles T, Meza F, Nedjroaoui D, Tena F, Türke M, Vázquez RJ, Weltz M (2019) Desertification. In: Shukla PR, Skeg J, Buendia EC, Masson-Delmotte V, Pörtner H, Roberts DC, Zhai P, Slade R, Connors S, van Diemen S, Ferrat M, Haughey E, Luz S, Pathak M, Petzold J, Pereira JP, Vyas P, Huntley E, Kissick K, Belkacemi M, Malley J (eds) Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems
Mohammed AJ, Alarcón M, Pino D (2018) Extreme temperature events on the Iberian Peninsula: statistical trajectory analysis and synoptic patterns. Int J Climatol 38(14):5305–5322. https://doi.org/10.1002/joc.5733
Paris JD, Stohl A, Ciais P, Nédélec P, Belan BD, Yu Arshinov M, Ramonet M (2010) Source-receptor relationships for airborne measurements of CO2, CO and O3 above Siberia: a cluster-based approach. Atmos Chem Phys 10(4):1671–1687. https://doi.org/10.5194/acp-10-1671-2010
Paschalidou AK, Kassomenos P, Karanikola P (2015) Disaggregating the contribution of local dispersion and long-range transport to the high PM10 values measured in a mediterranean urban environment. Sci Total Environ 527-528:119–125. https://doi.org/10.1016/j.scitotenv.2015.04.094
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Perry A (1969) Circulation anomalies during july 1965, in relation to pressure patterns over the atlantic-european sector. Weather 24(1):19–22. https://doi.org/10.1002/j.1477-8696.1969.tb03097.x
Petrie RE, Shaffrey LC, Sutton RT (2015) Atmospheric response in summer linked to recent Arctic sea ice loss. Q J R Meteorol Soc 141(691):2070–2076. https://doi.org/10.1002/qj.2502
Petterssen S (1956) Weather analysis and forecasting, vol I. MacGraw-Hill, New York
Politi N, Nastos P, Sfetsos A, Vlachogiannis D, Dalezios NR (2018) Evaluation of the AWR-WRF model configuration at high resolution over the domain of Greece. Atmos Res 208:229–245. https://doi.org/10.1016/j.atmosres.2017.10.019
Politi N, Vlachogiannis D, Sfetsos A, Nastos PT (2021) High-resolution dynamical downscaling of ERA-Interim temperature and precipitation using WRF model for Greece. Clim Dyn. https://doi.org/10.1007/s00382-021-05741-9. http://link.springer.com/10.1007/s00382-021-05741-9
Politi N, Sfetsos A, Vlachogiannis D, Nastos PT, Karozis S (2020) A sensitivity study of high-resolution climate simulations for Greece. Clim 8(3):44. https://doi.org/10.3390/cli8030044
Proias T, Nastos PT, Larissi IK, Paliatsos AG, Angelopoulos A, Fildisis T (2010) Pm[sub 10] concentrations related to meteorology in volos, greece, AIP. https://doi.org/10.1063/1.3322316
R S, C K, SL G, J V C, S P (2020) Changes in climate patterns and their association to natural hazard distribution in south tyrol (eastern Italian Alps). Sci Rep 10:32193456. https://doi.org/10.1038/s41598-020-61615-w
Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim Chang 109(1-2):33–57. https://doi.org/10.1007/s10584-011-0149-y. http://link.springer.com/10.1007/s10584-011-0149-y
Rolph G, Stein A, Stunder B (2017) Real-time environmental applications and display system: READY. Environ Model Softw 95:210–228. https://doi.org/10.1016/j.envsoft.2017.06.025
Russo S, Dosio A, Graversen RG, Sillmann J, Carrao H, Dunbar MB, Singleton A, Montagna P, Barbola P, Vogt JV (2014) Magnitude of extreme heat waves in present climate and their projection in a warming world. J Geophys Res Atmos 119(22):12,500–12,512. https://doi.org/10.1002/2014JD022098. http://doi.wiley.com/10.1002/2014JD022098
Skamarock CW, Klemp BJ, Dudhia J, Gill OD, Barker MD, Duda GM, Huang X-Y, Wang W, Powers JG (2008) A Description of the Advanced Research WRF Model Version 3. Tech. rep., National Center for Atmospheric Research (NCAR). https://opensky.ucar.edu/islandora/object/technotes:500
Solberg S, Schmidbauer N, Semb A, Stordal F, Hov Ø (1996) Boundary-layer ozone depletion as seen in the Norwegian Arctic in spring. J Atmos Chem 23(3):301–332. https://doi.org/10.1007/BF00055158
Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) Noaa’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96(12):2059–2077. https://doi.org/10.1175/bams-d-14-00110.1
Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE, Edmonds JA (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim Chang 109(1-2):77–94. https://doi.org/10.1007/s10584-011-0151-4. http://link.springer.com/10.1007/s10584-011-0151-4
Torrance JD (1979) Upper windflow patterns in relation to rainfall in south-east Central Africa. Weather 34(3):106–115. https://doi.org/10.1002/j.1477-8696.1979.tb03418.x
Wen D, Lin JC, Millet DB, Stein AF, Draxler RR (2012) A backward-time stochastic Lagrangian air quality model. Atmos Environ 54:373–386. https://doi.org/10.1016/j.atmosenv.2012.02.042
Yin X, Musco V, Neamtiu I, Roshan U (2019) Statistically rigorous testing of clustering implementations. In: Proceedings - 2019 IEEE international conference on artificial intelligence testing, AITest 2019, pp 91–98. https://doi.org/10.1109/AITest.2019.000-1
Yu M, Cai X, Xu C, Song Y (2019) A climatological study of air pollution potential in China. Theor Appl Climatol 136(1-2):627–638. https://doi.org/10.1007/s00704-018-2511-8
Ziv B, Saaroni H, Alpert P (2004) The factors governing the summer regime of the eastern Mediterranean. Int J Climatol 24(14):1859–1871. https://doi.org/10.1002/joc.1113
Acknowledgements
The authors acknowledge partial funding by the project “National Research Network for Climate Change and its Impacts, (CLIMPACT - 105658/17-10-2019)” of the Ministry of Development, GSRT, Program of Public Investment, 2019. Financial support from Project WINDSURFER, which is part of ERA4CS (GA 690462), an ERA-NET initiated by JPI Climate, and funded by UREAD, CMCC, MET Norway, FMI, UC-IHC, MetEireann, KNMI, and NCSRD with co-funding by the European Union, is kindly acknowledged.
This work was supported by computational time granted from the Greek Research & Technology Network (GRNET) in the National HPC facility - ARIS - under project ID HRCOG (pr004020).
Funding
The authors acknowledge partial funding by the project “National Research Network for Climate Change and its Impacts, (CLIMPACT - 105658/17-10-2019)” of the Ministry of Development, GSRT, Program of Public Investment, 2019. Financial support from Project WINDSURFER, which is part of ERA4CS (GA 690462), an ERA-NET initiated by JPI Climate, and funded by UREAD, CMCC, MET Norway, FMI, UC-IHC, MetEireann, KNMI, and NCSRD with co-funding by the European Union, is kindly acknowledged.
Author information
Authors and Affiliations
Contributions
All the authors contributed to the study conception and design. Data collection and analysis were performed by S. Karozis and A. Sfetsos. Material preparation was performed by N. Gounaris. The first draft of the manuscript was written by S. Karozis and all the authors commented on previous versions of the manuscript. The final review and editing was performed by D. Vlachogianni. All the authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Karozis, S., Sfetsos, A., Gounaris, N. et al. An assessment of climate change impact on air masses arriving in Athens, Greece. Theor Appl Climatol 145, 501–517 (2021). https://doi.org/10.1007/s00704-021-03624-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-021-03624-x