Climate classification in Turkey: a case study evaluating Holdridge life zones

Abstract

The Holdridge life zone (HLZ) method is applied to map potential vegetation types in Turkey. The HLZ map is compared to a map of actual vegetation in order to assess the degradation status of vegetation in Turkey. Data required to identify HLZ classes are provided by the General Directorate of Meteorology, while the current vegetation status is estimated with data provided by the General Directorate of Forestry. After weather data are cleaned and missing values are replaced, the HLZ type is estimated for each station, and then thematic maps are created using the ArcGIS software. The study reveals that there are 12 HLZ types in Turkey. The three dominant types are as follows: cool temperate steppe, warm temperate dry forest, and cool temperate moist forest. In regions where physical geographical controls change in short distances, the biodiversity is greater, and linked to this, the HLZ diversity also appears to be greater. Comparing the identified life zones to the actual vegetation, in some areas, remarkable mismatches can be found. Although, in some regions, the life zone type is consistent with the land cover type, in some narrow areas, the potential vegetation does not reflect features of the current vegetation cover. Considering limitations and capabilities of the assessment approach used in this study, we think that the incompatibility between actual and modelled vegetation types in the eastern region of Turkey is caused by the intensive landscape use. The goal of this research is to support future bioclimatic studies and land use management strategies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. Akman Y, Ketenoğlu O (1986) The climate and vegetation of Turkey. Proc Roy Soc Edinburgh 89B:123–134. https://doi.org/10.1017/S0269727000008964

    Article  Google Scholar 

  2. Alexandersson HA (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661–675. https://doi.org/10.1002/joc.3370060607

    Article  Google Scholar 

  3. Atalay I (1994) Türkiyenin vejetasyon coğrafyası (Plant geography of Turkey). Eagean University Press, Izmir (in Turkish)

    Google Scholar 

  4. Atalay I (2006) The effects of mountainous areas on biodiversity: a case study from the northern Anatolian Mountains and the Taurus Mountains. Grazer Schr Geogr Raumf 41:17–26

    Google Scholar 

  5. Atalay I (2008) Ekosistem ekolojisi ve coğrafya (Ecosystem ecology and geography). Meta Basım Matbaacılık, Izmir (in Turkish)

    Google Scholar 

  6. Atalay I, Efe R, Öztürk M (2014) Ecology and classification of forests in Turkey. Procedia Soc Behav Sci 120:788–805. https://doi.org/10.1016/j.sbspro.2014.02.163

    Article  Google Scholar 

  7. Budyko M (1974) Climate and life. Academic Press, New York

    Google Scholar 

  8. Chen X, Zhang X-S, Li B-L (2003) The possible response of life zones in China under global climate change. Glob Planet Chang 38(3–4):327–337. https://doi.org/10.1016/S0921-8181(03)00115-2

    Article  Google Scholar 

  9. Çolak AH, Rotherham ID (2006) A review of the forest vegetation of Turkey: its status past and present and its future conservation. Biol Environ 106(3):343–354. https://doi.org/10.3318/BIOE.2006.106.3.343

    Article  Google Scholar 

  10. Cramer WP, Leemans R (1993) Assessing impacts of climate change on vegetation using climate classification systems. In: Solomon AM, Shugart HH (eds) Vegetation dynamics & Global change. Springer, Boston, pp 190–217. https://doi.org/10.1007/978-1-4615-2816-6_10

    Google Scholar 

  11. Davis PH (1965–1985) Flora of Turkey and the East Aegean Islands. Edinburgh University Press, Edinburgh, pp 1–9

    Google Scholar 

  12. Davis PH (1988) Flora of Turkey and the East Aegean Islands, vol 10. Edinburgh University Press, Edinburgh

    Google Scholar 

  13. De Martonne E (1942) Nouvelle carte mondial de l'indice d'aridité (New world map of the aridity index). Ann Geogr 288:241–250. https://doi.org/10.3406/geo.1942.12050 (in French)

    Article  Google Scholar 

  14. Emanuel WR, Shugart HH, Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim Chang 7(1):29–43. https://doi.org/10.1007/BF00139439

    Article  Google Scholar 

  15. Emberger L (1955) Une classification biogéographique des climats (A biogeographical classification of climates). Trav Lab Bot Zool Fac Sci Serv Bot Montpellier 7:3–43 (in French)

    Google Scholar 

  16. Erdős L, Ambarlı D, Anenkhonov OA, Bátori Z, Cserhalmi D, Kiss M, Kröel-Dulay G, Liu H, Magnes M, Molnár Z, Naqinezhad A, Semenishchenkov YA, Tölgyesi C, Török P (2018) The edge of two worlds: a new review and synthesis on Eurasian forest-steppes. Appl Veg Sci 21(3):345–362. https://doi.org/10.1111/avsc.12382

    Article  Google Scholar 

  17. Ergüner Y, Kumar J, Hoffman FM, Dalfes HN, Hargrove WW (2019) Mapping ecoregions under climate change: a case study from the biological ‘crossroads’ of three continents, Turkey. Landsc Ecol 34(1):35–50. https://doi.org/10.1007/s10980-018-0743-8

    Article  Google Scholar 

  18. Erik S, Tarıkahya B (2004) Türkiye florası üzerine (On flora of Turkey). Kebikeç 17:139–163 (in Turkish)

    Google Scholar 

  19. Erinç S (1949) The climates of Turkey according to Thornthwaite’s classifications. Ann Assoc Am Geogr 39(1):26–46. https://doi.org/10.1080/00045604909351994

    Article  Google Scholar 

  20. Evrendilek F, Berberoglu S, Gulbeyaz O, Ertekin C (2007) Modeling potential distribution and carbon dynamics of natural terrestrial ecosystems: a case study of Turkey. Sensors 7(10):2273–2296. https://doi.org/10.3390/s7102273

    Article  Google Scholar 

  21. Eyre SR (1963) Vegetation and soils: a world picture. Edward Arnold, London

    Google Scholar 

  22. Fan Z, Fan B (2019) Shifts of the mean centers of potential vegetation ecosystems under future climate change in Eurasia. Forests 10(10):873. https://doi.org/10.3390/f10100873

    Article  Google Scholar 

  23. Fan ZM, Li J, Yue TX (2013) Land-cover changes of biome transition zones in Loess Plateau of China. Ecol Model 252:129–140. https://doi.org/10.1016/j.ecolmodel.2012.07.039

    Article  Google Scholar 

  24. Fan Z, Fan B, Yue T (2019) Terrestrial ecosystem scenarios and their response to climate change in Eurasia. Sci China Earth Sci 62(10):1607–1618. https://doi.org/10.1007/s11430-018-9374-3

    Article  Google Scholar 

  25. Garcia Lopez JM (2001) Mediterranean phytoclimates in Turkey. Ecol Mediterr 27:15–32. https://doi.org/10.3406/ecmed.2001.1904

    Article  Google Scholar 

  26. General Directorate of Forestry (GDF) (2015) Türkiye orman varlığı (Status of forests in Turkey). General Directorate of Forestry Publ, Ankara (in Turkish)

    Google Scholar 

  27. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  28. Henderson-Sellers A (1994) Global terrestrial vegetation ‘prediction’: the use and abuse of climate and application models. Prog Phys Geogr 18(2):209–246. https://doi.org/10.1177/030913339401800203

    Article  Google Scholar 

  29. Holdridge LR (1947) Determination of world plant formations from simple climatic data. Science 105(2727):367–368. https://doi.org/10.1126/science.105.2727.367

    Article  Google Scholar 

  30. Holdridge LR (1959) Simple method for determining potential evapotranspiration from temperature data. Science 130(3375):572. https://doi.org/10.1126/science.130.3375.572

    Article  Google Scholar 

  31. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San Jose

    Google Scholar 

  32. Holdridge LR, Grenke WC, Hatheway WH, Liang T, Tosi JA Jr (1971) Forest environments in tropical life zones: a pilot study. Pergamon Press, New York

    Google Scholar 

  33. Huggett RJ (2004) Fundamentals of biogeography, 2nd edn. Routledge, London

    Google Scholar 

  34. Isaac C, Bourque CPA (2001) Ecological life zones of Saint Lucia. Glob Ecol Biogeogr 10(5):549–566. https://doi.org/10.1046/j.1466-822X.2001.00257.x

    Article  Google Scholar 

  35. Khalyani AH, Gould WA, Harmsen E, Terando A, Quinones M, Collazo JA (2016) Climate change implications for tropical islands: Interpolating and interpreting statistically downscaled GCM projections for management and planning. J Appl Meteorol Climatol 55(2):265–282. https://doi.org/10.1175/JAMC-D-15-0182.1

    Article  Google Scholar 

  36. Khatun K, Imbach P, Zamora JC (2013) An assessment of climate change impacts on the tropical forests of Central America using the Holdridge life zone (HLZ) land classification system. iForest 6(4):183–189. https://doi.org/10.3832/ifor0743-006

    Article  Google Scholar 

  37. Köppen W (1918) Klassifikation der klimate nach temperatur, niederschlag und jahreslauf (Classification of climates according to temperature, precipitation and seasonal cycle). Petermanns Geogr Mitt 64:193–203 (in German)

    Google Scholar 

  38. Köppen W (1936) Das geographische system der klimate (The geographical system of climates). In: Köppen W, Geiger R (eds) Handbuch der klimatologie. Verlag von Gebrüder Borntraeger, Berlin, pp 1–44 (in German)

    Google Scholar 

  39. Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metal Min Soc South Africa 52:119–139

    Google Scholar 

  40. Leemans R (1990) Possible changes in natural vegetation patterns due to global warming. IIASA Working Paper. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  41. Leemans R, Cramer W, van Minnen JG (1996) Prediction of global biome distribution using bioclimatic equilibrium models. In: Breymeyer AI, Hall DO, Melillo JM, Ågren GI (eds) Effects of global change on coniferous forests and grassland. Wiley, New York, pp 414–450

    Google Scholar 

  42. Lin SH (2003) Spatial modeling using the Holdridge life zone system in Puerto Rico. Doctoral Thesis, State University of New York, New York

    Google Scholar 

  43. Lugo AE, Brown SL, Dodson R, Smith TS, Shugart HH (1999) The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J Biogeogr 26(5):1025–1038. https://doi.org/10.1046/j.1365-2699.1999.00329.x

    Article  Google Scholar 

  44. Ly S, Charles C, Degré A (2013) Different methods for spatial interpolation of rainfall data for operational hydrology and hydrological modeling at watershed scale. A review. Biotechnol Agron Soc Environ 17(2):392–406

    Google Scholar 

  45. Mittermeier RA, Robles PG, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CM, Lamoreux J, Da Fonseca GAB (2005) Hotspots revisited: Earth’s biologically richest and most endangered terrestrial ecoregions. University of Chicago Press, Chicago

    Google Scholar 

  46. Monserud RA (1990) Methods for comparing global vegetation maps. IIASA Working Paper. International Institute for Applied Systems Analysis, Laxenburg

    Google Scholar 

  47. Monserud RA, Leemans R (1992) Comparing global vegetation maps with the Kappa statistics. Ecol Model 62(4):275–293. https://doi.org/10.1016/0304-3800(92)90003-W

    Article  Google Scholar 

  48. Mucina L (2019) Biome: evolution of a crucial ecological and biogeographical concept. New Phytol 222(1):97–114. https://doi.org/10.1111/nph.15609

    Article  Google Scholar 

  49. Odom RH, Ford WM (2020) Assessing the vulnerability of military installations in the coterminous United States to potential biome shifts resulting from rapid climate change. Environ Manage 66(4):564–589. https://doi.org/10.1007/s00267-020-01331-3

    Article  Google Scholar 

  50. Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger iklim sınıflandırmasına göre Türkiye’nin iklim tipleri (Climate types of Turkey according to Köppen-Geiger climate classification). J Geogr 35:17–27. https://doi.org/10.26650/JGEOG295515 (in Turkish)

    Article  Google Scholar 

  51. Peng C (2000) From static biogeographical model to dynamic global vegetation model: a global perspective on modelling vegetation dynamics. Ecol Model 135(1):33–54. https://doi.org/10.1016/S0304-3800(00)00348-3

    Article  Google Scholar 

  52. Raab T, Krümmelbein J, Schneider A, Gerwin W, Maurer T, Naeth MA (2012) Initial ecosystem processes as key factors of landscape development—a review. Phys Geogr 33(4):305–343. https://doi.org/10.2747/0272-3646.33.4.305

    Article  Google Scholar 

  53. Raja NB, Aydin O, Çiçek İ, Türkoğlu N (2019) A reconstruction of Turkey’s potential natural vegetation using climate indicators. J For Res 30(6):2199–2211. https://doi.org/10.1007/s11676-018-0855-7

    Article  Google Scholar 

  54. Sabino E, Lavado W, Aybar C (2019) Estimación de las zonas de vida de Holdridge en el Perú (Holdridge life zones in Peru). Dirección de Hidrología, Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Lima (in Spanish)

    Google Scholar 

  55. Sapta S, Sulistyantara B, Fatimah IS, Faqih A (2015) Geospatial approach for ecosystem change study of Lombok island under the influence of climate change. Pro Environ Sci 24:165–173. https://doi.org/10.1016/j.proenv.2015.03.022

    Article  Google Scholar 

  56. Şekercioğlu CH, Anderson S, Akcay E, Bilgin R, Can ÖE, Semiz G, Tavsanoğu C, Yokes MB, Soyumert A, Ipekdal K, Sağlam IK, Yücel M, Dalfes HN (2011) Turkey’s globally important biodiversity in crisis. Biol Conserv 144(12):2752–2769. https://doi.org/10.1016/j.biocon.2011.06.025

    Article  Google Scholar 

  57. Şensoy S (2004) The mountains influence on Turkey climate. In: Proceedings of BALWOIS-2004. Republic of Macedonia, Ohrid, pp 1–10

    Google Scholar 

  58. Sisneros R, Huang J, Ostrouchov G, Hoffman F (2011) Visualizing life zone boundary sensitivities across climate models and temporal spans. Procedia Comput Sci 4:1582–1591. https://doi.org/10.1016/j.procs.2011.04.171

    Article  Google Scholar 

  59. Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer-Verlag, New York

    Google Scholar 

  60. Sümegi P, Gulyás S, Persaits G, Szelepcsényi Z (2012) Long environment change in forest steppe habitat of the Great Hungarian Plain based on paleoecological data. In: Rakonczai J, Ladányi Z (eds) Review of climate change research program at the University of Szeged (2010-2012). Institute of Geography and Geology, University of Szeged, Szeged, pp 7–24

    Google Scholar 

  61. Sümegi P, Molnár D, Sávai S, Náfrádi K, Novák Z, Szelepcsényi Z, Törőcsik T (2015) First radiocarbon dated paleoecological data from the freshwater carbonates of the Danube-Tisza Interfluve. Open Geosci 7(1):40–52. https://doi.org/10.1515/geo-2015-0003

    Article  Google Scholar 

  62. Sümegi P, Marković SB, Molnár D, Sávai S, Náfrádi K, Szelepcsényi Z, Novák Z (2016) Črvenka loess-paleosol sequence revisited: local and regional quaternary biogeographical inferences of the southern Carpathian Basin. Open Geosci 8(1):390–404. https://doi.org/10.1515/geo-2016-0031

    Article  Google Scholar 

  63. Szelepcsényi Z, Breuer H, Sümegi P (2014) The climate of Carpathian Region in the 20th century based on the original and modified Holdridge life zone system. Cent Eur J Geosci 6(3):293–307. https://doi.org/10.2478/s13533-012-0189-5

    Article  Google Scholar 

  64. Szelepcsényi Z, Breuer H, Kis A, Pongrácz R, Sümegi P (2018) Assessment of projected climate change in the Carpathian Region using the Holdridge life zone system. Theor Appl Climatol 131(1–2):593–610. https://doi.org/10.1007/s00704-016-1987-3

    Article  Google Scholar 

  65. Tatli H, Dalfes HN (2016) Defining Holdridge’s life zones over Turkey. Int J Climatol 36(11):3864–3872. https://doi.org/10.1002/joc.4600

    Article  Google Scholar 

  66. Tatli H, Dalfes HN (2020) Long-time memory in drought via detrended fluctuation analysis. Water Resour Manage 34(3):1199–1212. https://doi.org/10.1007/s11269-020-02493-9

    Article  Google Scholar 

  67. Tatli H, Menteş ŞS (2019) Detrended cross-correlation patterns between North Atlantic oscillation and precipitation. Theor Appl Climatol 138(1–2):387–397. https://doi.org/10.1007/s00704-019-02827-7

    Article  Google Scholar 

  68. Tatli H, Türkeş M (2011) Use of the spectral clustering to determine coherent precipitation regions in Turkey for the period 1929–2007. Int J Climatol 31(14):2055–2067. https://doi.org/10.1002/joc.2212

    Article  Google Scholar 

  69. Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1984

    Google Scholar 

  70. Thornthwaite CW (1933) The climates of the Earth. Geogr Rev 23(3):433–440. https://doi.org/10.2307/209629

    Article  Google Scholar 

  71. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. https://doi.org/10.2307/210739

    Article  Google Scholar 

  72. Tres A, Tetto AF, Soares RV, Wendling WT, Santos GH (2020) Ecological life zones of Brazil. Floresta 50(3):1575–1584. https://doi.org/10.5380/rf.v50i3.64833

    Article  Google Scholar 

  73. Trewartha GT (1968) An introduction to climate, 4th edn. McGraw-Hill, New York

    Google Scholar 

  74. Walter H, Lieth H (1967) Klimadiagramm-weltatlas (Climate chart world atlas). Veb Gustav Fischer, Jena (in German)

    Google Scholar 

  75. Wesche K, Ambarlı D, Kamp J, Török P, Treiber J, Dengler J (2016) The Palaearctic steppe biome: a new synthesis. Biodivers Conserv 25(12):2197–2231. https://doi.org/10.1007/s10531-016-1214-7

    Article  Google Scholar 

  76. Xu C-Y, Singh VP (2002) Cross comparison of empirical equations for calculating potential evapotranspiration with data from Switzerland. Water Resour Manage 16(3):197–219. https://doi.org/10.1023/A:1020282515975

    Article  Google Scholar 

  77. Yates DN, Kittel TGF, Cannon RF (2000) Comparing the correlative Holdridge model to mechanistic biogeographical models for assessing vegetation distribution response to climatic change. Clim Chang 44(1–2):59–87. https://doi.org/10.1023/A:1005495908758

    Article  Google Scholar 

  78. Yılmaz E, Çiçek İ (2016) Türkiye Thornthwaite iklim sınıflandırması (Thornthwaite climate classification of Turkey). J Hum Sci 13(3):3973–3994. https://doi.org/10.14687/jhs.v13i3.3994 (in Turkish)

    Article  Google Scholar 

  79. Yue TX, Fan ZM, Liu JY, Wei BX (2006) Scenarios of major terrestrial ecosystems in China. Ecol Model 199(3):363–376. https://doi.org/10.1016/j.ecolmodel.2006.05.026

    Article  Google Scholar 

  80. Zhang G, Kang Y, Han G, Sakurai K (2011) Effect of climate change over the past half century on the distribution, extent and NPP of ecosystems of Inner Mongolia. Glob Change Biol 17(1):377–389. https://doi.org/10.1111/j.1365-2486.2010.02237.x

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate anonymous reviewers for their valuable suggestions and constructive comments.

Code availability

The code that supports the findings of this study is not available.

Author information

Affiliations

Authors

Contributions

Mehmet Kadri Tekin, Hasan Tatli, and Telat Koç contributed equally to this study.

Corresponding author

Correspondence to Hasan Tatli.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tekin, M.K., Tatli, H. & Koç, T. Climate classification in Turkey: a case study evaluating Holdridge life zones. Theor Appl Climatol (2021). https://doi.org/10.1007/s00704-021-03565-5

Download citation

Keywords

  • Biodiversity
  • Classification
  • Climate
  • GIS
  • HLZ
  • Turkey