On the cause-and-effect relations between aerosols, water vapor, and clouds over East Asia

Abstract

Atmosphere is a complex dynamical system. Here, we investigated the causal links between aerosols, water vapor, and clouds, using the convergent cross mapping (CCM) method, which is based on nonlinear state space reconstruction. We utilized remote sensing data of aerosol optical depth at 550 nm (AOD), water vapor (WV), cloud cover (CC), cloud optical depth (COD), cloud effective radius-ice (CERI), and cloud effective radius-liquid (CERL) from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor over East Asia, for the period 2003–2018. Our analysis shows that there is a bidirectional forcing between AOD, CC, and COD which could be attributed to the invigoration effect of aerosols on clouds. In addition, there is a bidirectional forcing between AOD and WV and AOD and CERL, which could be attributed to the first indirect effect of aerosols on clouds, while there is no causality among AOD and CERI, probably because of strong coupling among aerosols and ice nuclei. Based on our analysis, we conclude that CCM method can effectively be used in all aerosol–cloud interactions’ studies, searching for causality among the parameters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Data and materials availability

Available after request

Code availability

Available after request

References

  1. Ackerman AS, Toon OB, Stevens DE et al (2000) Reduction of tropical cloudiness by soot. Science (80- ) 288:1042–1047. https://doi.org/10.1126/science.288.5468.1042

  2. Alam K, Khan R, Blaschke T, Mukhtiar A (2014) Variability of aerosol optical depth and their impact on cloud properties in Pakistan. J Atmos Solar-Terrestrial Phys 107:104–112. https://doi.org/10.1016/j.jastp.2013.11.012

    Article  Google Scholar 

  3. Albrecht BA (1989) Aerosols, cloud microphysics, and fractional cloudiness. Science 245:1227–1230. https://doi.org/10.1126/science.245.4923.1227

    Article  Google Scholar 

  4. Andreae MO, Rosenfeld D (2008) Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Rev 89:13–41. https://doi.org/10.1016/j.earscirev.2008.03.001

    Article  Google Scholar 

  5. Ascioti FA, Beltrami E, Carroll TO, Wirick C (1993) Is there chaos in plankton dynamics? J Plankton Res 15:603–617. https://doi.org/10.1093/plankt/15.6.603

    Article  Google Scholar 

  6. Clark AT, Ye H, Isbell F, Deyle ER, Cowles J, Tilman GD, Sugihara G (2015) Spatial convergent cross mapping to detect causal relationships from short time series. Ecology 96:1174–1181. https://doi.org/10.1890/14-1479.1

    Article  Google Scholar 

  7. Deyle ER, Sugihara G (2011) Generalized theorems for nonlinear state space reconstruction. PLoS One 6:e18295. https://doi.org/10.1371/journal.pone.0018295

    Article  Google Scholar 

  8. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153. https://doi.org/10.1175/1520-0442(1997)010<2147:AMTETS>2.0.CO;2

    Article  Google Scholar 

  9. Eck TF, Holben BN, Reid JS, Xian P, Giles DM, Sinyuk A, Smirnov A, Schafer JS, Slutsker I, Kim J, Koo JH, Choi M, Kim KC, Sano I, Arola A, Sayer AM, Levy RC, Munchak LA, O'Neill NT, Lyapustin A, Hsu NC, Randles CA, da Silva AM, Buchard V, Govindaraju RC, Hyer E, Crawford JH, Wang P, Xia X (2018) Observations of the interaction and transport of fine mode aerosols with cloud and/or fog in Northeast Asia from aerosol robotic network and satellite remote sensing. J Geophys Res Atmos 123:5560–5587. https://doi.org/10.1029/2018JD028313

    Article  Google Scholar 

  10. Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys Res Lett 30:19–22. https://doi.org/10.1029/2002GL016633

    Article  Google Scholar 

  11. Feingold G, Remer LA, Ramaprasad J, Kaufman YJ (2001) Analysis of smoke impact on clouds in Brazilian biomass burning regions: an extension of Twomey’s approach. J Geophys Res 106:22907–22922. https://doi.org/10.1029/2001JD000732

    Article  Google Scholar 

  12. Gao B-C, Kaufman YJ (1998) The MODIS near-IR water vapor algorithm. Available online at: https://atmosphere-imager.gsfc.nasa.gov/documentation/atbds-plans-guides. Accessed 22 December 2020

  13. Grandey BS, Stier P, Wagner TM (2013) Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data. Atmos Chem Phys 13:3177–3184. https://doi.org/10.5194/acp-13-3177-2013

    Article  Google Scholar 

  14. Granger CWJ (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37:424. https://doi.org/10.2307/1912791

    Article  Google Scholar 

  15. Gryspeerdt E, Stier P, Partridge DG (2014) Satellite observations of cloud regime development: the role of aerosol processes. Atmos Chem Phys 14:1141–1158. https://doi.org/10.5194/acp-14-1141-2014

    Article  Google Scholar 

  16. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res Atmos 102:6831–6864. https://doi.org/10.1029/96JD03436

    Article  Google Scholar 

  17. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543. https://doi.org/10.1029/1999RG000078

    Article  Google Scholar 

  18. Heskamp L, Abeelen ASSM den, Lagro J, Claassen JAHR (2014) Convergent cross mapping: a promising technique for cerebral autoregulation estimation. Int J Clin Neurosci Ment Heal S20. https://doi.org/10.21035/ijcnmh.2014.1(Suppl.1).S20

  19. Hodzic A, Duvel JP (2018) Impact of biomass burning aerosols on the diurnal cycle of convective clouds and precipitation over a tropical island. J Geophys Res Atmos 123:1017–1036. https://doi.org/10.1002/2017JD027521

    Article  Google Scholar 

  20. Hsu NC, Jeong M-J, Bettenhausen C, Sayer AM, Hansell R, Seftor CS, Huang J, Tsay SC (2013) Enhanced deep blue aerosol retrieval algorithm: the second generation. J Geophys Res Atmos 118:9296–9315. https://doi.org/10.1002/jgrd.50712

    Article  Google Scholar 

  21. Huang J, Lin B, Minnis P, Wang T, Wang X, Hu Y, Yi Y, Ayers JK (2006) Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys Res Lett 33:L19802. https://doi.org/10.1029/2006GL026561

    Article  Google Scholar 

  22. Huang J, Minnis P, Chen B, Huang Z, Liu Z, Zhao Q, Yi Y, Ayers JK (2008) Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J Geophys Res 113:D23212. https://doi.org/10.1029/2008JD010620

    Article  Google Scholar 

  23. Hubanks PA, King MD, Platnick S, Pincus R (2019) MODIS algorithm theoretical basis document no. ATBD-MOD-30 for Level-3 global gridded atmosphere products (08_D3, 08_E3, 08_M3) and users guide. Available online at https://atmosphere-imager.gsfc.nasa.gov/products/monthly) Accessed 22 December 2020

  24. Jones TA, Christopher SA (2010) Statistical properties of aerosol-cloud-precipitation interactions in South America. Atmos Chem Phys 10:2287–2305. https://doi.org/10.5194/acp-10-2287-2010, 2010

  25. Josic K (2000) Synchronization of chaotic systems and invariant manifolds. Nonlinearity 13:1321–1336. https://doi.org/10.1088/0951-7715/13/4/318

    Article  Google Scholar 

  26. Kant S, Panda J, Gautam R (2019) A seasonal analysis of aerosol-cloud-radiation interaction over Indian region during 2000–2017. Atmos Environ 201:212–222. https://doi.org/10.1016/j.atmosenv.2018.12.044

    Article  Google Scholar 

  27. Koren I, Dagan G, Altaratz O (2014) From aerosol-limited to invigoration of warm convective clouds. Science (80- ) 344:1143–1146. https://doi.org/10.1126/science.1252595

  28. Koren I, Kaufman YJ, Rosenfeld D, Remer LA, Rudich Y (2005) Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys Res Lett 32:n/a-n/a. https://doi.org/10.1029/2005GL023187

  29. Kourtidis K, Stathopoulos S, Georgoulias AK, Alexandri G, Rapsomanikis S (2015) A study of the impact of synoptic weather conditions and water vapor on aerosol–cloud relationships over major urban clusters of China. Atmos Chem Phys 15:10955–10964. https://doi.org/10.5194/acp-15-10955-2015

    Article  Google Scholar 

  30. Kudzotsa I, Dobbie S, Phillips V (2019) Modeled aerosol-cloud indirect effects and processes based on an observed partially glaciated marine deep convective cloud case. Atmos Environ 204:12–21. https://doi.org/10.1016/j.atmosenv.2019.02.010

    Article  Google Scholar 

  31. Kumar A (2013) Variability of aerosol optical depth and cloud parameters over North Eastern regions of India retrieved from MODIS satellite data. J Atmos Solar-Terrestrial Phys 100–101:34–49. https://doi.org/10.1016/j.jastp.2013.03.025

    Article  Google Scholar 

  32. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The Collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:2989–3034. https://doi.org/10.5194/amt-6-2989-2013

    Article  Google Scholar 

  33. Levy RC, Remer LA, Dubovik O (2007) Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J Geophys Res 112:D13210. https://doi.org/10.1029/2006JD007815

    Article  Google Scholar 

  34. Li Z, Li C, Chen H, et al (2011) East Asian studies of tropospheric aerosols and their impact on regional climate (EAST-AIRC): an overview. J Geophys Res 116:D00K34. 10.1029/2010JD015257

  35. Li Z, Niu F, Lee K-H, et al (2007) Validation and understanding of Moderate Resolution Imaging Spectroradiometer aerosol products (C5) using ground-based measurements from the handheld Sun photometer network in China. J Geophys Res 112:D22S09. https://doi.org/10.1029/2007JD008479

  36. Liu J, Li Z (2018) Significant underestimation in the optically based estimation of the aerosol first indirect effect induced by the aerosol swelling effect. Geophys Res Lett 45:5690–5699. https://doi.org/10.1029/2018GL077679

    Article  Google Scholar 

  37. Liu Y, de Leeuw G, Kerminen V-M, Zhang J, Zhou P, Nie W, Qi X, Hong J, Wang Y, Ding A, Guo H, Krüger O, Kulmala M, Petäjä T (2017) Analysis of aerosol effects on warm clouds over the Yangtze River Delta from multi-sensor satellite observations. Atmos Chem Phys 17:5623–5641. https://doi.org/10.5194/acp-17-5623-2017

    Article  Google Scholar 

  38. Luo Y, Zheng X, Zhao T, Chen J (2014) A climatology of aerosol optical depth over China from recent 10 years of MODIS remote sensing data. Int J Climatol 34:863–870. https://doi.org/10.1002/joc.3728

    Article  Google Scholar 

  39. McCracken JM, Weigel RS (2014) Convergent cross-mapping and pairwise asymmetric inference. Phys Rev E - Stat Nonlinear, Soft Matter Phys 90:1–7. https://doi.org/10.1103/PhysRevE.90.062903

    Article  Google Scholar 

  40. Nakajima T, King MD (1990) Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: theory. J Atmos Sci 47:1878–1893. https://doi.org/10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2

    Article  Google Scholar 

  41. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45:712–716. https://doi.org/10.1103/PhysRevLett.45.712

    Article  Google Scholar 

  42. Park S-Y, Lee H-J, Kang J-E, Lee T, Kim C-H (2018) Aerosol radiative effects on mesoscale cloud–precipitation variables over Northeast Asia during the MAPS-Seoul 2015 campaign. Atmos Environ 172:109–123. https://doi.org/10.1016/j.atmosenv.2017.10.044

    Article  Google Scholar 

  43. Platnick S, King M, Hubanks P (2015) MODIS atmosphere L3 monthly product. NASA MODIS Adaptive Processing System. Goddard Space Flight Center, USA. Available online at: https://doi.org/10.5067/MODIS/MOD08_M3.006. Accessed 22 December 2020

  44. Platnick S, King MD, Mayer K, Wind G, Amarasinghe N, Marchant B, Arnold G, Zhang Z, Hubanks P, Ridgway B, Riedi J, (2018) ‘ MODIS cloud optical properties: user guide for the collection 6/6.1 Level-2 MOD06/MYD06 product and associated Level-3 datasets version 1.1. Available online at: https://atmosphere-imager.gsfc.nasa.gov/documentation/atbds-plans-guides. Accessed 22 December 2020

  45. Rao S, Dey S (2020) Consistent signal of aerosol indirect and semi-direct effect on water clouds in the oceanic regions adjacent to the Indian subcontinent. Atmos Res 232:104677. https://doi.org/10.1016/j.atmosres.2019.104677

    Article  Google Scholar 

  46. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products, and validation. J Atmos Sci 62:947–973. https://doi.org/10.1175/JAS3385.1

    Article  Google Scholar 

  47. Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI (1995) Generalized synchronization of chaos in directionally coupled chaotic systems. Phys Rev E 51:980–994. https://doi.org/10.1103/PhysRevE.51.980

    Article  Google Scholar 

  48. Shi YR, Levy RC, Eck TF, Fisher B, Mattoo S, Remer LA, Slutsker I, Zhang J (2019) Characterizing the 2015 Indonesia fire event using modified MODIS aerosol retrievals. Atmos Chem Phys 19:259–274. https://doi.org/10.5194/acp-19-259-2019

    Article  Google Scholar 

  49. Solomos S, Bougiatioti A, Soupiona O, Papayannis A, Mylonaki M, Papanikolaou C, Argyrouli A, Nenes A (2019) Effects of regional and local atmospheric dynamics on the aerosol and CCN load over Athens. Atmos Environ 197:53–65. https://doi.org/10.1016/j.atmosenv.2018.10.025

    Article  Google Scholar 

  50. Stathopoulos S, Georgoulias AK, Kourtidis K (2017) Space-borne observations of aerosol - cloud relations for cloud systems of different heights. Atmos Res 183:191–201. https://doi.org/10.1016/j.atmosres.2016.09.005

    Article  Google Scholar 

  51. Stevens B, Feingold G (2009) Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461:607–613. https://doi.org/10.1038/nature08281

    Article  Google Scholar 

  52. Sugihara G (1994) Nonlinear forecasting for the classification of natural time series. Philos Trans R Soc London Ser A Phys Eng Sci 348:477–495. https://doi.org/10.1098/rsta.1994.0106

    Article  Google Scholar 

  53. Sugihara G, Grenfell B, May RM (1990) Distinguishing error from chaos in ecological time series. Philos Trans - R Soc London, B 330:235–251. https://doi.org/10.1098/rstb.1990.0195

    Article  Google Scholar 

  54. Sugihara G, May R, Ye H et al (2012) Detecting causality in complex ecosystems. Science (80- ) 338:496–500. https://doi.org/10.1126/science.1227079

  55. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741. https://doi.org/10.1038/344734a0

    Article  Google Scholar 

  56. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical Systems and Turbulence, Warwick 1980, Lecture Notes in Mathematics, vol 898. Springer, Berlin, Heidelberg

    Google Scholar 

  57. Team M C M, Ackerman S, Strabala K, Menzel P, Frey R, et al (2010) Discriminating clear-sky from cloud with modis algorithm theoretical basis document (mod35). Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin – Madison. Available online at: https://atmosphere-imager.gsfc.nasa.gov/documentation/atbds-plans-guides. Accessed 22 December 2020

  58. Ten Hoeve JE, Remer LA, Jacobson MZ (2011) Microphysical and radiative effects of aerosols on warm clouds during the Amazon biomass burning season as observed by MODIS: impacts of water vapor and land cover. Atmos Chem Phys 11:3021–3036. https://doi.org/10.5194/acp-11-3021-2011

    Article  Google Scholar 

  59. Tsonis AA, Deyle ER, May RM, Sugihara G, Swanson K, Verbeten JD, Wang G (2015) Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature. Proc Natl Acad Sci 112:3253–3256. https://doi.org/10.1073/pnas.1420291112

    Article  Google Scholar 

  60. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ 8:1251–1256. https://doi.org/10.1016/0004-6981(74)90004-3

    Article  Google Scholar 

  61. Wang F, Guo J, Wu Y, Zhang X, Deng M, Li X, Zhang J, Zhao J (2014a) Satellite observed aerosol-induced variability in warm cloud properties under different meteorological conditions over eastern China. Atmos Environ 84:122–132. https://doi.org/10.1016/j.atmosenv.2013.11.018

    Article  Google Scholar 

  62. Wang SX, Zhao B, Cai SY, Klimont Z, Nielsen CP, Morikawa T, Woo JH, Kim Y, Fu X, Xu JY, Hao JM, He KB (2014b) Emission trends and mitigation options for air pollutants in East Asia. Atmos Chem Phys 14:6571–6603. https://doi.org/10.5194/acp-14-6571-2014

    Article  Google Scholar 

  63. Wang Y, Hu F, Cao Y, Yuan X, Yang C (2019) Improved CCM for variable causality detection in complex systems. Control Eng Pract 83:67–82. https://doi.org/10.1016/j.conengprac.2018.10.005

    Article  Google Scholar 

  64. Wei J, Li Z, Peng Y, Sun L (2019) MODIS Collection 6.1 aerosol optical depth products over land and ocean: validation and comparison. Atmos Environ 201:428–440. https://doi.org/10.1016/j.atmosenv.2018.12.004

    Article  Google Scholar 

  65. Xie Y, Zhang Y, Xiong X, Qu JJ, Che H (2011) Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos Environ 45:5970–5978. https://doi.org/10.1016/j.atmosenv.2011.08.002

    Article  Google Scholar 

  66. Zhang D, Liu D, Luo T, Wang Z, Yin Y (2015) Aerosol impacts on cloud thermodynamic phase change over East Asia observed with CALIPSO and CloudSat measurements. J Geophys Res Atmos 120:1490–1501. https://doi.org/10.1002/2014JD022630

    Article  Google Scholar 

  67. Zhang N, Wang G, Tsonis AA (2019) Dynamical evidence for causality between Northern Hemisphere annular mode and winter surface air temperature over Northeast Asia. Clim Dyn 52:3175–3182. https://doi.org/10.1007/s00382-018-4317-x

    Article  Google Scholar 

  68. Zhao B, Gu Y, Liou K et al (2018a) Type-dependent responses of ice cloud properties to aerosols from satellite retrievals. Geophys Res Lett 45:3297–3306. https://doi.org/10.1002/2018GL077261

    Article  Google Scholar 

  69. Zhao X, Liu Y, Yu F, Heidinger AK (2018b) Using long-term satellite observations to identify sensitive regimes and active regions of aerosol indirect effects for liquid clouds over global oceans. J Geophys Res Atmos 123:457–472. https://doi.org/10.1002/2017JD027187

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NASA’s Earth Observing System Data and Information System (EOSDIS), for providing MODIS Aqua aerosol, water vapor, and cloud data used in this study, through GIOVANNI website (https://giovanni.gsfc.nasa.gov/giovanni/) and the rEDM developing team for the provision of rEDM R package (https://ha0ye.github.io/rEDM/index.html). The authors would also like to thank the anonymous reviewers for their detailed comments and suggestions that substantially improved the quality of this manuscript.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Stavros Stathopoulos, Anastasios A. Tsonis, and Konstantinos Kourtidis. The first draft of the manuscript was written by Stavros Stathopoulos and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Stavros Stathopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1781 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stathopoulos, S., Tsonis, A.A. & Kourtidis, K. On the cause-and-effect relations between aerosols, water vapor, and clouds over East Asia. Theor Appl Climatol (2021). https://doi.org/10.1007/s00704-021-03563-7

Download citation