Skip to main content

Advertisement

Log in

Rainfall trends over a North Atlantic small island in the period 1937/1938–2016/2017 and an early climate teleconnection

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Changes in the rainfall amounts in a small island in the North Atlantic Ocean—Madeira Island—were analysed based on complete daily rainfall series aggregated into 1-, 3-, 6- and 12-month rainfall and annual maximum rainfalls of 41 rain gauges (1937/1938–2016/2017). The gaps of the daily rainfall data were filled in by the multivariate imputation by chained equations whose performance was evaluated. The Mann-Kendall test coupled with Sen’s slope estimator was applied to detect and quantify trends. The sequential Mann-Kendall test was used to identify abrupt changes in trends. Results show a widespread downward trend in seasonal and annual rainfall, with the highest values in Madeira’s central region. A strong association between the downward rainfall trends and the upward trends of the North Atlantic Oscillation Index was found. New insights into the understanding of the rainfall patterns in small island environments in the North Atlantic were produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adarsh S, Janga Reddy M (2015) Trend analysis of rainfall in four meteorological subdivisions of southern India using nonparametric methods and discrete wavelet transforms. Int J Climatol 35(6):1107–1124

    Google Scholar 

  • Adeloye AJ, Rustum R (2012) Self-organising map rainfall-runoff multivariate modelling for runoff reconstruction in inadequately gauged basins. Hydrol Res 43(5):603–617

    Google Scholar 

  • Aissia MAB, Chebana F, Ouarda TB (2017) Multivariate missing data in hydrology–Review and applications. Adv Water Resour 110:299–309

    Google Scholar 

  • Akritas MG, Murphy SA, Lavalley MP (1995) The Theil-Sen estimator with doubly censored data and applications to astronomy. J Am Stat Assoc 90(429):170–177

    Google Scholar 

  • Aleryani A, Wang W, De La Iglesia B (2018) Dealing with missing data and uncertainty in the Context of Data Mining. In: In International Conference on Hybrid Artificial Intelligence Systems. Springer, Cham, pp 289–301

    Google Scholar 

  • Awange JL, Kuhn M, Anyah R, Forootan E (2017) Changes and variability of precipitation and temperature in the Ganges–Brahmaputra–Meghna River Basin based on global high-resolution reanalyses. Int J Climatol 37(4):2141–2159

    Google Scholar 

  • Azur M, Stuart E, Frangakis C, Leaf P (2011) Multiple imputation by chained equations: what is it and how does it work? Int J Methods Psychiatr Res 20(1):40–49

    Google Scholar 

  • Baioni D, Castaldini D, Cencetti C (2011) Human activity and damaging landslides and floods on Madeira Island. Nat Hazards Earth Syst Sci 11(11)

  • Barros V, Field C, Dokke D, Mastrandrea M, Mach K, Bilir TE et al (2014) Climate change 2014: impacts, adaptation, and vulnerability-part b: regional aspects-contribution of working group ii to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Bartier PM, Keller CP (1996) Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW). Comput Geosci 22(7):795–799

    Google Scholar 

  • Campozano, L., Sánchez, E., Aviles, A., & Samaniego, E. 2014. Evaluation of infilling methods for time series of daily precipitation and temperature: the case of the Ecuadorian Andes.

    Google Scholar 

  • Chaudhry A, Li W, Basri A, Patenaude F (2019) A method for improving imputation and prediction accuracy of highly seasonal univariate data with large periods of missingness. Wirel Commun Mob Comput 2019:1–13

    Google Scholar 

  • Chazarra A, Mestre A, Pires V, Cunha S, Silva A, Marques J, . . . Nunes L. 2011. Climate Atlas of the Archipelagos of the Canary Islands, Madeira and the Azores: air temperature and precipitation (1971-2000).

  • Couto F, Salgado R, Costa MJ (2012) Analysis of intense rainfall events on Madeira Island during the 2009/2010 winter. Nat Hazards Earth Syst Sci 12(7):2225–2240

    Google Scholar 

  • Cropper T (2013) The weather and climate of Macaronesia: past, present and future. Weather 68(11):300–307

    Google Scholar 

  • Cropper T, Hanna E (2014) An analysis of the climate of Macaronesia, 1865–2012. Int J Climatol 34(3):604–622

    Google Scholar 

  • Das PK, Chakraborty A, Seshasai M (2014) Spatial analysis of temporal trend of rainfall and rainy days during the Indian summer monsoon season using daily gridded 0.5–0.5. rainfall data for the period of 1971–2005. Meteorol Appl 21(3):481–493

    Google Scholar 

  • de Carvalho JRP, Monteiro A, Boffinho JE, Nakai AM, Assad ED (2017) Model for multiple imputation to estimate daily rainfall data and filling of faults. Rev Brasil Meteorol 32(4):575–583

    Google Scholar 

  • Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Resour 1:251–266

    Google Scholar 

  • Duarte, R. 1998. Prospecção e captação de águas subterrâneas em terrenos vulcânicos, arquipélago da Madeira. 4o Congresso da Água-A Água como Recurso Estruturante do Desenvolvimento” Coimbra, Portugal.

  • Duffy P, Doutriaux C, Santer B, Fodor I (2001) Effect of missing data on estimates of near-surface temperature change since 1900. J Clim 14(13):2809–2814

    Google Scholar 

  • Eekhout JP, Hunink JE, Terink W, de Vente J (2018) Why increased extreme precipitation under climate change negatively affects water security. Hydrol Earth Syst Sci 22(11):5935–5946

    Google Scholar 

  • Eischeid J, Pasteris P, Diaz H, Plantico M, Lott N (2000) Creating a serially complete, national daily time series of temperature and precipitation for the western united states. J Appl Meteorol 39(9):1580–1591

    Google Scholar 

  • Enders CK, Mistler SA, Keller BT (2016) Multilevel multiple imputation: a review and evaluation of joint modeling and chained equations imputation. Psychol Methods 21(2):222–240

    Google Scholar 

  • Espinosa LA, Portela MM, Rodrigues R (2019) Spatio-temporal variability of droughts over past 80 years in Madeira Island. J Hydrol: Regional Stud 25:100623

    Google Scholar 

  • Falkland A, Custodio E et al (1991) Hydrology and water resources of small islands: a practical guide (No. 49). UNESCO, Paris

    Google Scholar 

  • Faris P, Ghali W, Brant R, Norris C, Galbraith D, Knudtson M et al (2002) Multiple imputation versus data enhancement for dealing with missing data in observational health care outcome analyses. J Clin Epidemiol 55(2):184–191

    Google Scholar 

  • Field CB, Barros V, Stocker TF, Dahe Q (2012) Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Fragoso M, Trigo R, Pinto J, Lopes S, Lopes A, Ulbrich S, Magro C (2012) The 20 February 2010 Madeira flash-floods: synoptic analysis and extreme rainfall assessment. Nat Hazards Earth Syst Sci 12(3):715–730

    Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference. Chapman and Hall/CRC, London

    Google Scholar 

  • Gao Y (2017) Dealing with missing data in hydrology: data analysis of discharge and groundwater time-series in Northeast Germany (Doctoral dissertation). Department of Earth Sciences, Freie Universität, Berlin

    Google Scholar 

  • Gebrechorkos SH, Hülsmann S, Bernhofer C (2019) Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci Rep 9(1):1–9

    Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. John Wiley & Sons, Hoboken

    Google Scholar 

  • Gouveia-Reis D, Lopes LG, Mendonça S (2016) A dependence modelling study of extreme rainfall in Madeira Island. Phys Chem Earth, Parts A/B/C 94:85–93

    Google Scholar 

  • Graham J (2009) Missing data analysis: making it work in the real world. Annu Rev Psychol 60:549–576

    Google Scholar 

  • Graham JW, Olchowski AE, Gilreath TD (2007) How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prev Sci 8(3):206–213

    Google Scholar 

  • Grimaldi S, Petroselli A, Tauro F, Porfiri M (2012) Time of concentration: a paradox in modern hydrology. Hydrol Sci J 57(2):217–228

    Google Scholar 

  • Hair J, Black W, Babin B, Anderson R, Tatham R (1998) Multivariate data analysis (Vol. 5). Prentice Hall, New Jersey

    Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistical methods in water resources (Vol. 323). US Geological survey, Reston, VA

    Google Scholar 

  • Herrera RG, Puyol DG, MartÍn EH, Presa LG, Rodríguez PR (2001) Influence of the North Atlantic oscillation on the Canary Islands precipitation. J Clim 14(19):3889–3903

    Google Scholar 

  • Hurrell J (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269(5224):676–679

    Google Scholar 

  • Hurrell, J. 2018. NCAR Staff (Eds): The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based). Retrieved 2019-01-25, from https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based

  • INE (2012) Censos 2011 Resultados Definitivos - Região Autónoma da Madeira (Instituto Nacional de Estatística, I.P, Statistics Portugal ed.). Periodicidade decenal, Lisboa, Portugal

    Google Scholar 

  • Iqbal M, Hameed S, Khan F (2013) Influence of Azores high pressure on Middle Eastern rainfall. Theor Appl Climatol 111(1-2):211–221

    Google Scholar 

  • Jones P, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17(13):1433–1450

    Google Scholar 

  • Jury MR, Winter A (2010) Warming of an elevated layer over the Caribbean. Clim Chang 99(1-2):247–259

    Google Scholar 

  • Kang H (2013) The prevention and handling of the missing data. Kor J Anesthesiol 64(5):402–406

    Google Scholar 

  • Kendall MG (1955) Rank correlation methods. The British Psychological Society, Paris

    Google Scholar 

  • Kenward M, Carpenter J (2007) Multiple imputation: current perspectives. Stat Methods Med Res 16(3):199–218

    Google Scholar 

  • Kharin VV, Zwiers FW (2005) Estimating extremes in transient climate change simulations. J Clim 18(8):1156–1173

    Google Scholar 

  • Killick R, Fearnhead P, Eckley IA (2012) Optimal detection of changepoints with a linear computational cost. J Am Stat Assoc 107(500):1590–1598

    Google Scholar 

  • Kim JW, Pachepsky YA (2010) Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. J Hydrol 394(3-4):305–314

    Google Scholar 

  • Krishan R, Nikam BR, Pingale SM, Chandrakar A, Khare D (2018) Analysis of trends in rainfall and dry/wet years over a century in the Eastern Ganga Canal command. Meteorol Appl 25(4):561–574

    Google Scholar 

  • Liberato M, Ramos A, Gouveia C, Sousa P, Russo A, Trigo R, Santo F (2017) Exceptionally extreme drought in Madeira Archipelago in 2012: Vegetation impacts and driving conditions. Agric For Meteorol 232:195–209

    Google Scholar 

  • Linacre E (2003) Climate data and resources: a reference and guide. Routledge

  • Lowry W (1972. Compendium of lecture notes in climatology for class iv meteorological personnel (No. 327). Secretariat of the World Meteorological Organization.

  • Mann HB (1945) Nonparametric tests against trend. Econometrica: J Econometric Soc:245–259

  • Marshall J, Kushnir Y, Battisti D, Chang P, Czaja A, Dickson R, Hurrell J, McCartney M, Saravanan R, Visbeck M (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21(15):1863–1898

    Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., ... & Connors, S. 2018. Summary for Policymakers. Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above pre-Industrial Levels., Global Warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of 1.5 C Above Pre-Industrial Levels and Related Global Greenhouse gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.

  • Mayer PV, Marzol-Jaén M, Parreño-Castellano J (2017) Precipitation trends and a daily precipitation concentration index for the mid-Eastern Atlantic (Canary Islands, Spain). Cuadernos Investig Geográfica 43:3095. https://doi.org/10.18172/cig.3095

    Article  Google Scholar 

  • McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change (Vol. 2). Cambridge University Press, Cambridge

    Google Scholar 

  • Meghanadh B, Aravalath L, Joshi B, Sathiamoorthy R, Kumar M (2019) Imputation of missing values in the fundamental data: using MICE framework. J Quant Econ 17(3):459–475

    Google Scholar 

  • Min S, Zhang X, Zwiers F, Friederichs P, Hense A (2009) Signal detectability in extreme precipitation changes assessed from twentieth century climate simulations. Clim Dyn 32(1):95–111

    Google Scholar 

  • Miranda, P., Valente, M., Tomé, A., Trigo, R., Coelho, M., Aguiar, A., & Azevedo, E. 2006. O clima de Portugal nos séculos XX e XXI. Alterações Climáticas em Portugal. Cenários, Impactos e Medidas de Adaptação, 45e113.

  • Miró JJ, Caselles V, Estrela MJ (2017) Multiple imputation of rainfall missing data in the Iberian Mediterranean context. Atmos Res 197:313–330

    Google Scholar 

  • Miró JJ, Estrela MJ, Caselles V, Gómez I (2018) Spatial and temporal rainfall changes in the Júcar and Segura basins (1955–2016): fine-scale trends. Int J Climatol 38(13):4699–4722

    Google Scholar 

  • Morales JL, Horta-Rangel FA, Segovia-Domínguez I, Morua AR, Hernández JH (2019) Analysis of a new spatial interpolation weighting method to estimate missing data applied to rainfall records. Atmósfera 32(3):237–259

    Google Scholar 

  • Mwale FD, Adeloye AJ, Rustum R (2012) Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi–a self organizing map approach. Phys Chem Earth, Parts A/B/C 50:34–43

    Google Scholar 

  • Mwale FD, Adeloye AJ, Rustum R (2014) Application of self-organising maps and multi-layer perceptron-artificial neural networks for streamflow and water level forecasting in data-poor catchments: the case of the Lower Shire floodplain, Malawi. Hydrol Res 45(6):838–854

    Google Scholar 

  • Nanda T, Sahoo B, Chatterjee C (2017) Enhancing the applicability of Kohonen Self-Organizing Map (KSOM) estimator for gap-filling in hydrometeorological timeseries data. J Hydrol 549:133–147

    Google Scholar 

  • Nicholls N (2010) Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Clim Dyn 34(6):835–845

    Google Scholar 

  • Nogueira J, Fernandes P, Nascimento A (2003) Composition of volatiles of banana cultivars from Madeira Island. Phytochem Analys: Int J Plant Chem Biochem Techniq 14(2):87–90

    Google Scholar 

  • Panda A, Sahu N (2019) Trend analysis of seasonal rainfall and temperature pattern in Kalahandi, Bolangir and Koraput districts of Odisha, India. Atmos Sci Lett 20(10):e932

    Google Scholar 

  • Parry M, Parry ML, Canziani O, Palutikof J, Van der Linden P, Hanson C (2007) Climate change 2007: impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the Intergovernmental Panel on Climate Change (Vol. 4). Cambridge University Press, Cambridge

    Google Scholar 

  • Pfister C, Weingartner R, Luterbacher J (2006) Hydrological winter droughts over the last 450 years in the Upper Rhine basin: a methodological approach. Hydrol Sci J 51(5):966–985

    Google Scholar 

  • Pigott TD (2001) A review of methods for missing data. Educ Res Eval 7(4):353–383

    Google Scholar 

  • Prada S (2000) Geologia e recursos hídricos subterrâneos da ilha da Madeira. In: Dissertação para obtenção do Grau de Doutor em Geologia (Unpublished doctoral dissertation). Universidade da Madeira, Funchal

    Google Scholar 

  • Prada S, Da Silva M, Cruz J (2005a) Groundwater behaviour in Madeira, volcanic island (Portugal). Hydrogeol J 13(5-6):800–812

    Google Scholar 

  • Prada S, Perestrelo M, Nunes A, Figueira C, Cruz J (2005b) Disponibilidades hídricas da Ilha da Madeira. Proyecto AQUAMAC: técnicas y métodos para la gestion sostenible del agua en la Macaronesia, pp 261–294

    Google Scholar 

  • Radi, N. F. A., Zakaria, R., & Azman, M. A. Z. 2015. Estimation of missing rainfall data using spatial interpolation and imputation methods. In AIP conference proceedings (Vol. 1643, No. 1, pp. 42-48). AIP.

  • Rahman MA, Yunsheng L, Sultana N (2017) Analysis and prediction of rainfall trends over Bangladesh using Mann–Kendall, Spearman’s rho tests and ARIMA model. Meteorog Atmos Phys 129(4):409–424

    Google Scholar 

  • Ramos, M. R., & Cordeiro, C. 2013. Trend tests in time series with missing values: a case study with imputation. In AIP Conference Proceedings (Vol. 1558, No. 1, pp. 1909-1912). AIP.

  • Ramos-Calzado P, Gómez-Camacho J, Pérez-Bernal F, Pita-López M (2008) A novel approach to precipitation series completion in climatological datasets: application to Andalusia. Int J Climatol 28(11):1525–1534

    Google Scholar 

  • Rao G, Uppala R, Singh V, Giridhar M (2015) Rainfall trend analysis: a case study of Godavari Sub Basin–Kadam water shed, Adilabad District, Telangana State. In: 3rd National Conference on Water, Environment and Society

    Google Scholar 

  • Rashid, M., Beecham, S., & Chowdhury, R. K. 2014. Influence of climate drivers on variability and trends in seasonal rainfall in the Onkaparinga catchment in South Australia: a wavelet approach. In 13th international conference on urban drainage (icud) (Vol. 712).

  • Rodrigues D, Ayala-Carcedo FJ (2003) Rain induced landslides and debris flows in Madeira Island, Portugal. Landslide News 14-15(15):43–45

    Google Scholar 

  • Royston P et al (2004) Multiple imputation of missing values. Stata J 4(3):227–241

    Google Scholar 

  • Royston P et al (2009) Multiple imputation of missing values: further update of ice, with an emphasis on categorical variables. Stata J 9(3):466–477

    Google Scholar 

  • Rubin D (1976) Inference and missing data. Biometrika 63(3):581–592

    Google Scholar 

  • Rubin D (2004) Multiple imputation for nonresponse in surveys (Vol. 81). John Wiley & Sons, Hoboken

    Google Scholar 

  • Rustum R, Adeloye A, Mwale F (2017) Spatial and temporal trend analysis of long-term rainfall records in data-poor catchments with missing data, a case study of lower Shire flood plain in Malawi for the period of 1953–2010. Hydrol Earth Syst Sci. https://doi.org/10.5194/hess-2017-601

  • Santos, F., & Portela, M. M. 2008. Quantificação de tendências em séries de precipitação mensal e anual em Portugal Continental. Seminário Ibero-Americano sobre Sistemas de Abastecimento Urbano SEREA, 8.

  • Santos F, Valente M, Miranda P, Aguiar A, Azevedo E, Tomé A, Coelho F (2004) Climate change scenarios in the Azores and Madeira islands. World Resour Rev 16(4):473–491

    Google Scholar 

  • Schafer J (1999) Multiple imputation: a primer. Stat Methods Med Res 8(1):3–15

    Google Scholar 

  • Schneider T (2001) Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J Clim 14(5):853–871

    Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Google Scholar 

  • Sharif M, Burn DH (2007) Improved k-nearest neighbor weather generating model. J Hydrol Eng 12(1):42–51

    Google Scholar 

  • Soltani M, Rousta I, Taheri SM (2013) Using Mann-Kendall and time series techniques for statistical analysis of long-term precipitation in Gorgan weather station. World Appl Sci J 28(7):902–908

    Google Scholar 

  • Stooksbury DE, Idso CD, Hubbard KG (1999) The effects of data gaps on the calculated monthly mean maximum and minimum temperatures in the continental. United States: a spatial and temporal study J Climate 12(5):1524–1533. https://doi.org/10.1175/1520-0442(1999)012<1524:TEODGO>2.0.CO;2

    Article  Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39(7):1082–1089

    Google Scholar 

  • Timbal B (2009) The continuing decline in south-east Australian rainfall—Update to May 2009. CAWCR Res Lett 2(4-11)

  • Turrado C, López M, Lasheras F, Gómez B, Rollé J, Juez F (2014) Missing data imputation of solar radiation data under different atmospheric conditions. Sensors 14(11):20382–20399

    Google Scholar 

  • Van Loon A, Van Lanen H, Hisdal H, Tallaksen L, Fendeková M, Oosterwijk J et al (2010) Understanding hydrological winter drought in Europe. Global Change: Facing Risks and Threats to Water Resources, vol 340. IAHS Publ, New York, pp 189–197

    Google Scholar 

  • Van-Buuren S (2018) Flexible imputation of missing data. Chapman and Hall/CRC

  • Van-Buuren, S., & Groothuis-Oudshoorn, K. 2010. mice: multivariate imputation by chained equations in r. Journal of stadtistical software, 1–68.

  • Van-Buuren S, Oudshoorn K (1999) Flexible mutlivariate imputation by mice. TNO, Leiden

    Google Scholar 

  • Vieira I, Barreto V, Figueira C, Lousada S, Prada S (2018) The use of detention basins to reduce flash flood hazard in small and steep volcanic watersheds–a simulation from Madeira Island. J Flood Risk Manag 11:S930–S942

    Google Scholar 

  • Villafuerte M II, Matsumoto J, Akasaka I, Takahashi HG, Kubota H, Cinco TA (2014) Long-term trends and variability of rainfall extremes in the Philippines. Atmos Res 137:1–13

    Google Scholar 

  • Vink G, Frank L, Pannekoek J, Van Buuren S (2014) Predictive mean matching imputation of semicontinuous variables. Statistica Neerlandica 68(1):61–90

    Google Scholar 

  • Voss R, May W, Roeckner E (2002) Enhanced resolution modelling study on anthropogenic climate change: changes in extremes of the hydrological cycle. Int J Climatol 22(7):755–777

    Google Scholar 

  • Wesonga R (2015) On multivariate imputation and forecasting of decadal wind speed missing data. SpringerPlus 4(1):12

    Google Scholar 

  • Westra S, Alexander LV, Zwiers FW (2013) Global increasing trends in annual maximum daily precipitation. J Clim 26(11):3904–3918

    Google Scholar 

  • White I, Royston P, Wood A (2011) Multiple imputation using chained equations: issues and guidance for practice. Stat Med 30(4):377–399

    Google Scholar 

  • Xia Y, Fabian P, Stohl A, Winterhalter M (1999) Forest climatology: estimation of missing values for Bavaria, Germany. Agric For Meteorol 96(1-3):131–144

    Google Scholar 

  • Xia Y, Fabian P, Winterhalter M, Zhao M (2001) Forest climatology: estimation and use of daily climatological data for Bavaria, Germany. Agric For Meteorol 106(2):87–103

    Google Scholar 

  • Zelenáková M, Purcz P, Portela MM, Hlavatá H and Gargar I 2014. Investigation of the trends in Rainfall Data in Slovakia, Portugal and Libya. Parte: http://hdl.handle.net/10316.2/34789.

  • Zhang Z (2016) Multiple imputation with multivariate imputation by chained equation (MICE) package. Annals Translat Med 4(2)

Download references

Acknowledgements

The authors thank the Instituto Português do Mar e da Atmosfera, I. P. (IPMA, I. P.) for the daily rainfall data provided for this research work.

Data availability statement

The datasets generated during and/or analysed during the current study are available on reasonable request from the corresponding author (Espinosa, L.A.).

Funding

The work of the first author is funded by The Portuguese Foundation for Science and Technology (FCT), grant no. PD/BD/128509/2017.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation: L.A.E., M.M.P.; methodology: L.A.E., M.M.P.; software: L.A.E.; validation: L.A.E.; formal analysis: L.A.E.; investigation: L.A.E.; resources: L.A.E., M.M.P., R.R.; data curation: L.A.E.; writing–original draft preparation: L.A.E., M.M.P.; writing–review and editing: L.A.E., M.M.P., R.R.; visualisation: L.A.E.; supervision: M.M.P, R.R. All authors have read and agreed to the published version of the manuscript. To the Theoretical and Applied Climatology journal editorial team, all authors listed immediately below have participated in conception and design or analysis and interpretation of the data; drafting the article or revising it critically for important intellectual content and approval of the final revised version.

1. Luis Angel Espinosa Villalpando (corresponding author)

2. Maria Manuela Portela

3. Rui Raposo Rodrigues

Corresponding author

Correspondence to Luis Angel Espinosa.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinosa, L.A., Portela, M.M. & Rodrigues, R. Rainfall trends over a North Atlantic small island in the period 1937/1938–2016/2017 and an early climate teleconnection. Theor Appl Climatol 144, 469–491 (2021). https://doi.org/10.1007/s00704-021-03547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03547-7

Keywords

Navigation