Skip to main content
Log in

Seasonal trend analysis of minimum air temperature in La Plata river basin

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

A Correction to this article was published on 27 January 2021

This article has been updated

Abstract

Regional economies that depend predominantly on agriculture and livestock are heavily affected by changes in air temperature, one such case are the activities in La Plata river basin (LPB). Some studies suggest that variations in the seasonal cycle and season onset would affect efficiency in the use of radiation by vegetation. This paper evaluates the distribution of minimum temperature seasonality trends over LPB, describes the trends in the seasonal cycle, and detects changes of minimum temperature extremes characterized by the number of frost days and the frequency of warm and cold nights. The analysis includes absolute minimum temperature 0(TnMin) and minimum average temperature (TnMean) from ERA5 reanalysis for the 1980–2015 period. Significant positive trends in the amplitude of annual average TnMin and TnMean are observed over more than half the area (53.5% and 69.9% of the basin, respectively). Amplitude and phase parameters suggest that average minimum temperature underwent greater variation than absolute minimum temperature over LPB. The shifts in phase indicate that minimum temperatures occurred earlier than usual in the year considering the 35-year series. In general terms, there is a shift toward warmer conditions. This warming is evident in seasonal trends of minimum temperature as well as in the significant increase in the number of warm nights, a significant decrease of cold days and a significant decrease in the number of frost days in the highest Andes mountains in the west of the LPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

ERA5 daily temperature data here used are available at Chambers (2019) ERA5-derived daily temperature summary 1980-2018 (Version 1.0) [Dataset]. Zenodo. doi:10.5281/zenodo.3403963

Change history

Notes

  1. World Meteorological Organization (WMO) Commission for Climatology (CCl)/CLIVAR/ JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI)

References

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111(D5). https://doi.org/10.1029/2005jd006290

  • Allen MR, de Coninck H, Dube OP et al (2018) Technical Summary. In Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D et al (eds) Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

  • Arsego DA, Ferraz SET, Nereu AS, Cardoso A, Zanon AJ (2018) Study of the impact of different indices associated with El Niño southern oscillation on soybean yield in Rio Grande do Sul. Ciência e Natura, Santa Maria 40:82–87 https://periodicos.ufsm.br/cienciaenatura/issue/view/1304

    Article  Google Scholar 

  • Avila FB, Pitman AJ, Donat MG, Alexander LV, Abramowitz G (2012) Climate model simulated changes in temperature extremes due to land cover change, J Geophys Res 117. https://doi.org/10.1029/2011JD016382

  • Avila-Diaz A, Benezoli V, Justino F, Torres R, Wilson A (2020) Assessing current and future trends of climate extremes across Brazil based on reanalyses and earth system model projections. Clim Dyn 55:1403–1426. https://doi.org/10.1007/s00382-020-05333-z

    Article  Google Scholar 

  • Barros V, Clarke R, Dias PS (2006) Climate change in the La Plata Basin. Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires. Website: http://www.cicplata.org/

  • Barros VR, Boninsegna JA, Camilloni IA, Chidiak M, Magrín GO, Rusticucci M (2015) Climate change in Argentina: trends, projections, impacts and adaptation. WIREs Clim Chang 6:151–169. https://doi.org/10.1002/wcc.316

    Article  Google Scholar 

  • Barrucand M (2008) Extremos de temperatura en Argentina: Cambios observados en la variabilidad espacio-temporal y su relación con otras características del sistema climático. Tesis de Doctorado en Ciencias de la Atmósfera y los Océanos, Universidad de Buenos Aires, pp 162

  • Barrucand M, Rusticucci M (2001) Climatología de temperaturas extremas en la Argentina. Variabilidad temporal y regional. Meteorol 26:85–101

    Google Scholar 

  • Berlato MA, Farenzha H, Fontana DC (2005) Associação entre El Niño Oscilação Sul e a produtividade do milho no Estado do Rio Grande do Sul. Pesq Agrop Brasileira 40:423–432

    Article  Google Scholar 

  • Berri GJ, Bertossa G (2004) The influence of the tropical and subtropical Atlantic and Pacific Oceans on precipitation variability over southern central South America on seasonal time scales. Int J Climatol 24:415–435

    Article  Google Scholar 

  • Carril AF, Cavalcanti IFA, Menéndez CG et al (2016) Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Clim Res 68:95–116. https://doi.org/10.3354/cr01374

    Article  Google Scholar 

  • Chambers J (2019) ERA5-derived daily temperature summary 1980-2018 (Version 1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.3403963

  • Collazo S, Barrucand M, Rusticucci M (2019a) Variability and predictability of winter cold nights in Argentina. Weather Climate Extremes 26:100236. https://doi.org/10.1016/j.wace.2019.100236

    Article  Google Scholar 

  • Collazo S, Barrucand M, Rusticucci M (2019b) Summer seasonal predictability of warm days in Argentina: statistical model approach. Theor Appl Climatol 138(3-4):1853–1876. https://doi.org/10.1007/s00704-019-02933-6

    Article  Google Scholar 

  • Comité Intergubernamental Coordinador de los Países de la Cuenca del Plata (CIC) (2017) Transboundary Diagnostic Analysis for the La Plata River Basin - TDA. 1st edition. https://cicplata.org/es/documentosprincipales/?sfw=pass1610131282. Accessed 10 May 2020.

  • Cornes R, Jones P (2013) How well does the ERA-Interim reanalysis replicate trends in extremes of surface temperature across Europe? J Geophys Res Atmos 118:10262–10276. https://doi.org/10.1002/jgrd.50799

  • Deng Y, Wang S, Bai X, Luo G, Wu L, Cao Y, Li H, Li C, Yang Y, Hu Z, Tian S (2020) Variation trend of global soil moisture and its cause analysis. Ecol Indic 110:105939. https://doi.org/10.1016/j.ecolind.2019.105939

    Article  Google Scholar 

  • Eastman JR, Sangermano F, Ghimire B, Zhu H, Chen H, Neeti N (2009) Seasonal trend analysis of image time series. Int J Remote Sens 30(10):2721–2726. https://doi.org/10.1080/01431160902755338

    Article  Google Scholar 

  • Eastman JR, Sangermano F, Machado EA, Rogan J, Anyamba A (2013) Global trends in seasonality of NDVI, 1982-2011. Remote Sens 5(10):4799–4818. https://doi.org/10.3390/rs5104799

    Article  Google Scholar 

  • Falvey M, Garreaud RD (2009) Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). J Geophys Res 114:D04102. https://doi.org/10.1029/2008JD010519

    Article  Google Scholar 

  • Fernández Long ME, Müller GV, Beltrán-Przekurat A, Scarpati OE (2013) Long-term and recent changes in temperature-based agroclimatic indices in Argentina. Int J Climatol 33(7):1.673–1.686

    Article  Google Scholar 

  • García GA, Dreccer MF, Miralles DJ, Serrago RA (2015) High night temperatures during grain number determination reduce wheat and barley grain yield: a field study. Glob Chang Biol 21:4153–4164

    Article  Google Scholar 

  • García GA, Serrago RA, Dreccer MF, Miralles DJ (2016) Post-anthesis warm nights reduce grain weight in field-grown wheat and barley. Field Crop Res 195:50–59

    Article  Google Scholar 

  • Hatfield JL, Prueger JH (2011) Agroecology: implications for plant response to climate change. Book Editor(s): Yadav SS, Redden RR, Hatfield JL, Lotze-Campen H, Hall AE https://doi.org/10.1002/9780470960929

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Climate Extremes 10(A):4–10. https://doi.org/10.1016/j.wace.2015.08.001

    Article  Google Scholar 

  • Hersbach H, Rosnay P, Bell B et al (2018) Operational global reanalysis: progress, future directions and synergies with NWP. In: ECMWF Report, p 65. https://www.ecmwf.int/node/18765

  • Jacques-Coper M, Garreaud RD (2015) Characterization of the 1970s climate shift in South America. Int J Climatol 35:2164–2179. https://doi.org/10.1002/joc.4120

    Article  Google Scholar 

  • Jones P, Lister D, Osborn T, Harpham C, Salmon M, Morice C (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res Atmos 117(D5):n/a-n/a. https://doi.org/10.1029/2011jd017139

    Article  Google Scholar 

  • Klein Tank AMG, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation, WMO-TD No. 1500/WCDMP-No. 72, Geneva. (52 pp.)

  • Lee SJ, Berbery EH (2012) Land cover change effects on the climate of the La Plata Basin. J Hydrometeorol 13:84–102

    Article  Google Scholar 

  • Lovino MA, Müller OV, Müller GV, Sgroi LC, Baethgen WE (2018a) Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northern Argentina. Hydrol Earth Syst Sci 22:3155–3174. https://doi.org/10.5194/hess-22-3155-2018

    Article  Google Scholar 

  • Lovino MA, Müller O, Berbery EH, Müller G (2018b) How have daily climate extremes changed in the recent past over northeastern Argentina? Glob Planet Chang 168:78–97. https://doi.org/10.1016/j.gloplacha.2018.06.008

    Article  Google Scholar 

  • Magrin GO, Travasso MI, Rodriguez GR, Solman S, Nuñez M (2009) Climate change and wheat production in Argentina. Int J Glob Warming 1(1/2/3):214–226. https://doi.org/10.1504/IJGW.2009.027090

    Article  Google Scholar 

  • Magrin GO, Marengo JA, Boulanger J-P et al (2014) Central and South America. In: Barros VR, Field CB, Dokken DJ et al (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1499–1566

    Google Scholar 

  • Mavromatis T, Stathis D (2010) Response of the water balance in Greece to temperature and precipitation trends. Theor Appl Climatol 104(1-2):13–24. https://doi.org/10.1007/s00704-010-0320-9

    Article  Google Scholar 

  • Mayeregger E, Casco M, Vera A (2015) “El Niño” y sus Impactos en el Sector Agrícola del Paraguay. Revista sobre Estudios e Investigaciones del Saber Académico. 9. http://publicaciones.uni.edu.py/index.php/eisa/article/view/97

  • Müller G, Nuñez M, Seluchi M (2000) Relationship between ENSO cycles and frost events within the pampa Húmeda region. Int J Climatol 20:1619–1637. https://doi.org/10.1002/1097-0088(20001115)20:13<1619::AID-JOC552>3.0.CO;2-F

    Article  Google Scholar 

  • Müller GV, Compagnucci R, Nuñez M, Salles A (2003) Surface circulation associated with frosts in the wet pampas. Int J Climatol 23(8):943–961. https://doi.org/10.1002/joc.907

    Article  Google Scholar 

  • Müller GV, Fernández Long ME, Bosch E (2011) Relación entre la temperatura de la superficie del mar de diferentes océanos y los rendimientos del maíz en la pampa húmeda. Meteorológica 40(1):5–16

    Google Scholar 

  • Neeti N, Eastman JR (2011) A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Trans GIS 15(5):599–611

    Article  Google Scholar 

  • Ordinola RN, Cogliati MG, Müller G (2017) Evaluación de la tendencia de la temperatura mínima en la cuenca del Plata entre 1980-2015 utilizando datos de reanálisis. In XXVIII Reunión Científica de la AAGG. La Plata. Retrieved from http://hdl.handle.net/10915/60718

  • Penalba OC, Bettolli ML, Vargas WM (2007) The impact of climate variability on soybean yields in Argentina. Multivariate regression. Meteorol Appl 14:3–14

    Article  Google Scholar 

  • Piñeiro G, Oesterheld M, Paruelo JM (2006) Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing. Ecosystems 9(3):357–373

    Article  Google Scholar 

  • Renom M, Rusticucci M, Barreiro M (2011) Multidecadal changes in the relationship between extreme temperature events in Uruguay and the general atmospheric circulation. Clim Dyn 37:2471–2480. https://doi.org/10.1007/s00382-010-0986-9

    Article  Google Scholar 

  • Rosso FV, Boiaski NT, Ferraz SET, Dewes CF, Tatsch JD (2015) Trends and decadal variability in air temperature over Southern Brazil. Am J Environ Eng 5(1A):85–95. https://doi.org/10.5923/s.ajee.201501.12

    Article  Google Scholar 

  • Sadras V, Monzón J (2006) Modelled wheat phenology captures rising temperature trends: Shortened time to flowering and maturity in Australia and Argentina. Field Crop Res 99:136–146

    Article  Google Scholar 

  • Skansi MM, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Betancour OJ, Castellón Geier YR, Correa Amaya RL, Jácome H, Malherios Ramos A, Oria Rojas C, Pasten A, Sallons Mitro S, Villaroel C, Martínez R, Alexander LV, Jones PD (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Chang 100:295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  • Stine AR, Huybers PJ, Fung IY (2009) Changes in the phase of the annual cycle of surface temperature. Nature 457:435–440

    Article  Google Scholar 

  • Tabari H, Hosseinzadeh Talaee P (2011) Analysis of trends in temperature data in arid and semi-arid regions of Iran. Glob Planet Chang 79(1-2):1–10. https://doi.org/10.1016/j.gloplacha.2011.07.008

    Article  Google Scholar 

  • Verón SR, de Abelleyra D, Lobell D (2015) Impacts of precipitation and temperature on crop yields in the Pampas. Clim Chang 130:235–245. https://doi.org/10.1007/s10584-015-1350-1

    Article  Google Scholar 

  • Victoria RL, Martinelli LA, Moraes JM, Ballester MV, Krushche AV (1998) Surface air temperature variations in the Amazon region and its borders during this century. J Clim 11:1105–1110

    Article  Google Scholar 

  • Yue S, Wang C (2000) The Mann-Kendall Test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour Manag 18(3):201–218. https://doi.org/10.1023/b:warm.0000043140.61082.60

    Article  Google Scholar 

  • Zazulie N, and Rusticucci M (2009) Cambios en la onda anual de temperatura en el sudeste de Sudamérica In XXVIII Reunión Científica de la AAGG. La Plata. 13-17

  • Zhang X, Alexander LV, Hegerl GC, Klein-Tank A, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2:851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

Download references

Acknowledgment

We are grateful to the anonymous reviewers whose constructive comments and recommendations helped to improve the manuscript.

Funding

This work was supported by the Universidad Nacional del Comahue (04-H165).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Marisa Cogliati and Miguel Lovino. The first draft of the manuscript was written by Marisa Cogliati, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Marisa G. Cogliati.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The second author’s name appears with two middle names (V. V.) and the correct form is with only one V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cogliati, M.G., Müller, G.V. & Lovino, M.A. Seasonal trend analysis of minimum air temperature in La Plata river basin. Theor Appl Climatol 144, 25–37 (2021). https://doi.org/10.1007/s00704-020-03512-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03512-w

Keywords

Navigation