Skip to main content

Advertisement

Log in

Revisiting climatic features in the Alaskan Arctic using newly collected data

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Climatic features in the Alaskan Arctic have typically been analyzed using data from the limited National Weather Service stations. However, the increasing availability of in situ data in this area allows a more comprehensive understanding of recent changes. This study used newly collected data from 41 stations to investigate climatic features and recent changes in the Alaskan Arctic from the mid-1940s to 2018. We found that the mean annual air temperature (MAAT) ranged from –11.0 to –6.4 C, annual amplitude of air temperature (AAAT) ranged from 16 to 22 C, annual precipitation ranged from 85 to 300 mm, and annual mean snow depth ranged from 13.5 to 34.5 cm during 2007–2012. Compared with data since the late 1980s, MAAT increased by \(\sim \)2 C near the coastline whereas AAAT did not significantly change. Changes in annual precipitation were complex among stations but showed a considerable increase in precipitation, snowfall, and snow depth during the cold months. The number of snow cover days declined, whereas the number of snowfall days increased at both Barrow and Kuparuk. This increase in snowfall events may be attributed to the declining sea ice concentration, which may enhance hydrological cycles. The observed bulk density of fresh snow was around 40–80 kg/m3 and declined from the mid-1980s to the late-1990s, then increased until the end of the study period. This expanded in situ dataset provides a more comprehensive understanding of climatic conditions in the Alaskan Arctic and confirms rapid changes during recent decades. This study may also serve to validate and benchmark high-resolution climate models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AMAP (2017) Snow, water, ice and permafrost in the arctic (swipa) 2017. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway

    Google Scholar 

  • Bieniek PA, Walsh JE, Thoman RL, Bhatt US (2014) Using climate divisions to analyze variations and trends in Alaska temperature and precipitation. J Clim 27(8):2800–2818. https://doi.org/10.1175/jcli-d-13-00342.1

    Article  Google Scholar 

  • Bintanja R (2018) The impact of Arctic warming on increased rainfall. Sci Rep 8(1):16001. https://doi.org/10.1038/s41598-018-34450-3

    Article  Google Scholar 

  • Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletskiy DA, Schoeneich P, Romanovsky VE, Lewkowicz AG, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaloye R, Diekmann B, Drozdov D, Etzelmuller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johansson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kroger T, Lambiel C, Lanckman JP, Luo DL, Malkova G, Meiklejohn I, Moskalenko N, Oliva M, Phillips M, Ramos M, Sannel A BK, Sergeev D, Seybold C, Skryabin P, Vasiliev A, Wu QB, Yoshikawa K, Zheleznyak M, Lantuit H (2019) Permafrost is warming at a global scale. Nat Commun 10:1–11

    Article  Google Scholar 

  • Bring A, Shiklomanov A, Lammers RB (2017) Pan-arctic river discharge: Prioritizing monitoring of future climate change hot spots. Earth’s Future 5(1):72–92. https://doi.org/10.1002/2016ef000434

    Article  Google Scholar 

  • Callaghan TV, Johansson M, Brown RD, Groisman PY, Labba N, Radionov V, Barry RG, Bulygina ON, Essery RichardLH, Frolov DM (2011) The changing face of Arctic snow cover: A synthesis of observed and projected changes. AMBIO: A Journal of the Human Environment 40(sup 1):17–31

    Article  Google Scholar 

  • Curtis J, Wendler G, Stone R, Dutton E (1998) Precipitation decrease in the western arctic, with special emphasis on barrow and barter island, alaska. Int J Climatol 18(15):1687–1707. https://doi.org/10.1002/(SICI)1097-0088(199812)18:15<1687::AID-JOC341>3.0.CO;2-2

    Article  Google Scholar 

  • Emmerton CA, StLouis VL, Humphreys ER, Gamon JA, Barker JD, Pastorello GZ (2016) Net ecosystem exchange of CO2 with rapidly changing high Arctic landscapes. Glob Chang Biol 22 (3):1185–200. https://doi.org/10.1111/gcb.13064

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Chapin FS (2007) Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Glob Chang Biol 13 (11):2425–2438. https://doi.org/10.1111/j.1365-2486.2007.01450.x

    Article  Google Scholar 

  • Fisher JB, Sikka M, Oechel WC, Huntzinger DN, Melton JR, Koven CD, Ahlström A, Arain MA, Baker I, Chen JM, Ciais P, Davidson C, Dietze M, El-Masri B, Hayes D, Huntingford C, Jain AK, Levy PE, Lomas MR, Poulter B, Price D, Sahoo AK, Schaefer K, Tian H, Tomelleri E, Verbeeck H, Viovy N, Wania R, Zeng N, Miller CE (2014) Carbon cycle uncertainty in the Alaskan Arctic. Biogeosciences 11(15):4271–4288. https://doi.org/10.5194/bg-11-4271-2014

    Article  Google Scholar 

  • Hartmann B, Wendler G (2005) The significance of the 1976 pacific climate shift in the climatology of alaska. J Clim 18(22):4824–4839. https://doi.org/10.1175/JCLI3532.1

    Article  Google Scholar 

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other Arctic regions. Clim Chang 72 (3):251–298. https://doi.org/10.1007/s10584-005-5352-2

    Article  Google Scholar 

  • Judson A, Doesken N (2000) Density of freshly fallen snow in the central rocky mountains. Bull Am Meteorol Soc 81(7):1577–1588. https://doi.org/10.1175/1520-0477(2000)081<1577:DOFFSI>2.3.CO;2

    Article  Google Scholar 

  • Kittel T GF, Baker BB, Higgins JV, Haney JC (2011) Climate vulnerability of ecosystems and landscapes on alaska’s north slope. Reg Environ Chang 11(1):249–264. https://doi.org/10.1007/s10113-010-0180-y

    Article  Google Scholar 

  • Kopec BG, Feng X, Michel FA, Posmentier ES (2016) Influence of sea ice on Arctic precipitation. Proceedings of the National Academy of Sciences 113(1):46–51. https://doi.org/10.1073/pnas.1504633113

    Article  Google Scholar 

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. https://doi.org/10.1038/ngeo2674

    Article  Google Scholar 

  • Livensperger C, Steltzer H, Darrouzet-Nardi A, Sullivan PF, Wallenstein M, Weintraub MN (2016) Earlier snowmelt and warming lead to earlier but not necessarily more plant growth. AoB Plants 8:plw021–plw021

    Article  Google Scholar 

  • Löwe H, Egli L, Bartlett S, Guala M, Manes C (2007) On the evolution of the snow surface during snowfall. Geophys Res Lett 34(21):1–5. https://doi.org/10.1029/2007GL031637

    Article  Google Scholar 

  • McGuire AD, Lawrence DM, Koven C, Clein JS, Burke E, Chen G, Jafarov E, MacDougall AH, Marchenko S, Nicolsky D, Peng S, Rinke A, Ciais P, Gouttevin I, Hayes DJ, Ji D, Krinner G, Moore JC, Romanovsky V, Schadel C, Schaefer K, Schuur E AG, Zhuang Q (2018) Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc Natl Acad Sci USA 115(15):3882–3887. https://doi.org/10.1073/pnas.1719903115

    Article  Google Scholar 

  • Nelson FE, Outcalt SI (1987) A computational method for prediction and regionalization of permafrost. Arct Alp Res 19(3):279–288. https://doi.org/10.1080/00040851.1987.12002602

    Article  Google Scholar 

  • Obrist D, Agnan Y, Jiskra M, Olson CL, Colegrove DP, Hueber J, Moore CW, Sonke JE, Helmig D (2017) Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution. Nature 547(7662):201–204. https://doi.org/10.1038/nature22997

    Article  Google Scholar 

  • Osterkamp TE (2007) Characteristics of the recent warming of permafrost in Alaska. J Geophys Res 112(F2):F02S02–F02S02. https://doi.org/10.1029/2006jf000578

    Article  Google Scholar 

  • Overeem I, Jafarov E, Wang K, Schaefer K, Stewart S, Clow G, Piper M, Elshorbany Y (2018) A modeling toolbox for permafrost landscapes. EOS, Transactions American Geophysical Union (Online), 99. https://doi.org/10.1029/2018EO105155

  • Pattison RR, Jorgenson JC, Raynolds MK, Welker JM (2015) Trends in NDVI and tundra community composition in the Arctic of NE Alaska between 1984 and 2009. Ecosystems 18(4):707–719. https://doi.org/10.1007/s10021-015-9858-9

    Article  Google Scholar 

  • Roebber PJ, Bruening SL, Schultz DM, Cortinas JV (2003) Improving snowfall forecasting by diagnosing snow density. Weather Forecast 18(2):264–287. https://doi.org/10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2

    Article  Google Scholar 

  • Rogers AN, Bromwich DH, Sinclair EN, Cullather RI (2001) The atmospheric hydrologic cycle over the arctic basin from reanalyses. part ii: Interannual variability. J Clim 14(11):2414–2429. https://doi.org/10.1175/1520-0442(2001)014<2414:TAHCOT>2.0.CO;2

    Article  Google Scholar 

  • Rutter N, Essery R, Pomeroy J, Altimir N, Andreadis K, Baker I, Barr A, Bartlett P, Boone A, Deng H, Douville H, Dutra E, Elder K, Ellis C, Feng X, Gelfan A, Goodbody A, Gusev Y, Gustafsson D, Hellström R, Hirabayashi Y, Hirota T, Jonas T, Koren V, Kuragina A, Lettenmaier D, Li W-P, Luce C, Martin E, Nasonova O, Pumpanen J, Pyles RD, Samuelsson P, Sandells M, Schädler G, Shmakin A, Smirnova TG, Stähli M, Stöckli R, Strasser U, Su H, Suzuki K, Takata K, Tanaka K, Thompson E, Vesala T, Viterbo P, Wiltshire A, Xia K, Xue Y, Yamazaki T (2009) Evaluation of forest snow processes models (snowmip2). Journal of Geophysical Research: Atmospheres, 114(D6). https://doi.org/10.1029/2008JD011063

  • Schuster PF, Schaefer KM, Aiken GR, Antweiler RC, Dewild JF, Gryziec JD, Gusmeroli A, Hugelius G, Jafarov E, Krabbenhoft DP (2018) Permafrost stores a globally significant amount of mercury. Geophys Res Lett 45(3):1463–1471

    Article  Google Scholar 

  • Sonke JE, Teisserenc R, Heimburger-Boavida LE, Petrova MV, Marusczak N, LeDantec T, Chupakov AV, Li C, Thackray CP, Sunderland EM, Tananaev N, Pokrovsky OS (2018) Eurasian river spring flood observations support net Arctic Ocean mercury export to the atmosphere and atlantic ocean. Proc Natl Acad Sci USA 115(50):E11586–E11594. https://doi.org/10.1073/pnas.1811957115

    Article  Google Scholar 

  • Stafford JM, Wendler G, Curtis J (2000) Temperature and precipitation of Alaska: 50 year trend analysis. Theor Appl Climatol 67(1-2):33–44. https://doi.org/10.1007/s007040070014

    Article  Google Scholar 

  • Stone RS, Dutton EG, Harris JM, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. Journal of Geophysical Research: Atmospheres 107(D10):ACL 10–1–ACL 10–13. https://doi.org/10.1029/2000jd000286

    Article  Google Scholar 

  • Wang K, Jafarov E, Overeem I, Romanovsky V, Schaefer K, Clow G, Urban F, Cable W, Piper M, Schwalm C, Zhang T, Kholodov A, Sousanes P, Loso M, Hill K (2018) A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA. Earth System Science Data 10 (4):2311–2328. https://doi.org/10.5194/essd-10-2311-2018

    Article  Google Scholar 

  • Wang K, Zhang T, Zhang X, Clow GD, Jafarov EE, Overeem I, Romanovsky V, Peng X, Cao B (2017) Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophys Res Lett 44(17):9029–9038. https://doi.org/10.1002/2017gl074232

    Article  Google Scholar 

  • Wendler G, Shulski M, Moore B (2010) Changes in the climate of the alaskan north slope and the ice concentration of the adjacent beaufort sea. Theor Appl Climatol 99(1):67–74. https://doi.org/10.1007/s00704-009-0127-8

    Article  Google Scholar 

  • Yang D, Zhao Y, Armstrong R, Robinson D, Brodzik M-J (2007) Streamflow response to seasonal snow cover mass changes over large Siberian watersheds. J Geophys Res: Earth Surface, 112(F2). https://doi.org/10.1029/2006jf000518

  • Zhang T, Osterkamp TE, Stamnes K (1996) Some characteristics of the climate in northern Alaska, USA. Arct Alp Res 28(4 ):509–518

    Article  Google Scholar 

  • Zhang X, Walsh JE, Zhang J, Bhatt US, Ikeda M (2004) Climatology and interannual variability of arctic cyclone activity: 19482002. J Clim 17(12):2300–2317. https://doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

We thank the data sources and research teams for producing and making their data available. We also appreciate the reviewers and editor for their insightful comments and suggestions that improved the manuscript. PermaModel is a package developed with Python, which is available at https://github.com/permamodel/permamodel. The nonlinear least squares method in Python was implemented by scipy.optimize.curve_fit.

Funding

This study was funded by the National Research and Development Program of China (2019YFC1509100 and 2019YFA0607003), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA2010030805), and the U.S. National Science Foundation (grant No. 1503559).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Kang Wang and Tingjun Zhang. The first draft of the manuscript was written by Tingjun Zhang and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tingjun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Zhang, T. Revisiting climatic features in the Alaskan Arctic using newly collected data. Theor Appl Climatol 143, 1251–1259 (2021). https://doi.org/10.1007/s00704-020-03495-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03495-8

Keywords

Navigation