Abstract
The present study aimed to assess the performance of CMIP6 and CMIP5 projects in projecting mean precipitation at annual, summer, autumn, winter, and spring timescales in the north and northeast of Iran over the period 1987–2005 using relative bias, correlation coefficient, root mean square error, relative error, and the Taylor diagram. This is the first attempt to compare CMIP6 and CMIP5 data in an arid region at a seasonal and annual scale. The results showed that the precipitations simulated by the ensembles of CMIP6 and CMIP5 models were different. The relative bias for winter was lower at all stations in CMIP6 than in CMIP5, so CMIP6 performed better in this respect. CMIP6 outperformed CMIP5 in projecting annual and spring precipitation in 60 and 69% of the stations, respectively. Whereas CMIP6 overestimated precipitation in 70% of the stations, CMIP5 underestimated it in 77% of the stations. CMIP5 models exhibited better performance in 70% of the stations only in autumn. In most seasons and stations, CMIP6 CGMs’ ensemble outperformed CMIP5. The results of HadGEM2-ES from CMIP5 and CESM2 from CMIP6 were more accurate than the models’ ensembles in both projects. Overall, CMIP6 models exhibited better performance than CMIP5 models.
This is a preview of subscription content,
to check access.





References
Ahmed K, Shahid S, Nawaz N, Khan N (2019) Modeling climate change impacts on precipitation in arid regions of Pakistan: a non-local model output statistics downscaling approach. Theor Appl Climatol 137(1-2):1347–1364. https://doi.org/10.1007/s00704-018-2672-5
Alijani B, O’Brien J, Yarnal B (2008) Spatial analysis of precipitation intensity and concentration in Iran. Theor Appl Climatol 94(1-2):107–124. https://doi.org/10.1007/s00704-007-0344-y
Arnell NW (2004) Climate change and global water resources: SRES emissions and socio-economic scenarios. Glob Environ Chang 14(1):31–52. https://doi.org/10.1016/j.gloenvcha.2003.10.006
Ashraf M, Mousavi Baygi GA, Kamali GH, Davari K (2011) Prediction of seasonal variations of climatological parameters over next 20 years by using statistical downscaling method of HADCM3 data (Case study: Khorasan Razavi province). J Water Soil [Online] 25(4):940–952. https://doi.org/10.22067/jsw.v0i0.10267
Attogouinon A, Lawin AE, Deliège JF (2020) Evaluation of general circulation models over the upper oueme river basin in the republic of Benin. Hydrology 7(1):11. https://doi.org/10.3390/hydrology7010011
Baker NC, Huang HP (2014) A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. J Clim 27(10):3731–3749. https://doi.org/10.1175/JCLI-D-13-00398.1
Bidad H (2016) Resilience to climate change of saffron production in the Khorasan province of Iran. Paper presented at the V International Symposium on Saffron Biology and Technology: Advances in Biology, Technologies, Uses and Market 1184. 253-258. https://doi.org/10.17660/ActaHortic.2017.1184.35
Chen FW, Liu CW (2012) Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ 10(3):209–222
Chen J, Brissette FP, Poulin A, Leconte RJWRR (2011) Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. 47(12). https://doi.org/10.1007/s10333-012-0319-1
Doulabian S, Golian S, Toosi AS, Murphy C (2020) Evaluating the effects of climate change on precipitation and temperature for Iran using RCP scenarios. J Water Clim Chang. https://doi.org/10.2166/wcc.2020.114
Duan K, Mei Y (2014) A comparison study of three statistical downscaling methods and their model-averaging ensemble for precipitation downscaling in China. Theor Appl Climatol 116(3-4):707–719. https://doi.org/10.1007/s00704-013-1069-8
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9(5):1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Feng L, Smith SJ, Braun C, Crippa M, Gidden MJ, Hoesly R, Klimont Z, Van Marle M, Van Den Berg M, Van Der Werf GR (2020) The generation of gridded emissions data for CMIP6. Geosci Model Dev 13(2):461–482. https://doi.org/10.5194/gmd-13-461-2020
Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res Atmos 113(D6). https://doi.org/10.1029/2007JD008972
Groppelli B, Bocchiola D, Rosso R (2011) Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: a case study in Italy. Water Resour Res 47(3). https://doi.org/10.1029/2010WR009437
Gusain A, Ghosh S, Karmakar S (2020) Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos Res 232:104680. https://doi.org/10.1016/j.atmosres.2019.104680
Heinze C, Eyring V, Friedlingstein P, Jones C, Balkanski Y, Collins W, Fichefet T, Gao S, Hall A, Ivanova D, Knorr W, Knutti R, Löw A, Ponater M, Schultz MG, Schulz M, Siebesma P, Teixeira J, Tselioudis G, Vancoppenolle M (2019) ESD reviews climate feedbacks in the Earth system and prospects for their evaluation. 10(3):379–452. https://doi.org/10.5194/esd-10-379-2019
Hughes JP, Guttorp P (1994) A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resour Res 30(5):1535–1546. https://doi.org/10.1029/93WR02983
Hussain M, Butt AR, Uzma F, Ahmed R, Irshad S, Rehman A, Yousaf B (2020) A comprehensive review of climate change impacts, adaptation, and mitigation on environmental and natural calamities in Pakistan. Environ Monit Assess 192(1):48. https://doi.org/10.1007/s10661-019-7956-4
Jafarzadeh H, Khozeymehnezhad A, Khashei-Siuki A, Bazi j. (2016) Impact zonation of climate change on rainfall pattern (case study: South Khorasan Province). J Rainwater Catchment Syst 3(4):1–10
Jiang R, Xie J, He H, Luo J, Zhu J (2015) Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012. Nat Hazards 75(3):2885–2903. https://doi.org/10.1007/s11069-014-1468-x
Koutroulis AG, Grillakis MG, Tsanis IK, Papadimitriou L (2016) Evaluation of precipitation and temperature simulation performance of the CMIP3 and CMIP5 historical experiments. Clim Dyn 47(5-6):1881–1898. https://doi.org/10.1007/s00382-015-2938-x
Kouzegaran S, Baygi MM, Babaeian I, Khashei-Siuki AJT, Climatology A (2020) Modeling of the saffron yield in Central Khorasan region based on meteorological extreme events. 139(3):1207–1217. https://doi.org/10.1007/s00704-019-03028-y
Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Jimenez B, Miller K, Oki T, Şen Z, Shiklomanov I (2008) The implications of projected climate change for freshwater resources and their management. Hydrol Sci J 53(1):3–10. https://doi.org/10.1623/hysj.53.1.3
Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17(2-3):83–106. https://doi.org/10.1007/PL00013736
Lashkari A, Alizadeh A, Rezaei EE, Bannayan M (2012) Mitigation of climate change impacts on maize productivity in northeast of Iran: a simulation study. Mitig Adapt Strateg Glob Chang 17(1):1–16. https://doi.org/10.1007/s11027-011-9305-y
Lauer A, Hamilton K (2013) Simulating clouds with global climate models: a comparison of CMIP5 results with CMIP3 and satellite data. J Clim 26(11):3823–3845. https://doi.org/10.1175/JCLI-D-12-00451.1
Li J, Mao J (2016) Changes in the boreal summer intraseasonal oscillation projected by the CNRM-CM5 model under the RCP 8.5 scenario. Clim Dyn 47(12):3713–3736. https://doi.org/10.1007/s00382-016-3038-2
Mahmouei AR, Rezaee M, Arjmand M (2016) Evaluation of the meteorological drought phenomenon by using four indices of drought (case study: Qaenat City in South Khorasan Province). J Eng Appl Sci 11(3):339–345. https://doi.org/10.3923/jeasci.2016.339.345
Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JF, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. https://doi.org/10.1175/BAMS-88-9-1383
Mohsenipour M, Shahid S, Chung ES, Wang XJ (2018) Changing pattern of droughts during cropping seasons of Bangladesh. Water Resour Manag 32(5):1555–1568. https://doi.org/10.1007/s11269-017-1890-4
Nicholson SE (2011) Dryland climatology. Cambridge University Press
Nie S, Fu S, Cao W, Jia X (2020) Comparison of monthly air and land surface temperature extremes simulated using CMIP5 and CMIP6 versions of the Beijing Climate Center climate model. Theor Appl Climatol 140(1-2):487–502. https://doi.org/10.1007/s00704-020-03090-x
O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014) A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim Chang 122(3):387–400. https://doi.org/10.1007/s10584-013-0905-2
Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92(3):207–225. https://doi.org/10.2151/jmsj.2014-302
Osborne T, Rose G, Wheeler T, Meteorology F (2013) Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric For Meteorol 170:183–194. https://doi.org/10.1016/j.agrformet.2012.07.006
Paek H, Huang HP (2013) Centennial trend and decadal-to-interdecadal variability of atmospheric angular momentum in CMIP3 and CMIP5 simulations. J Clim 26(11):3846–3864. https://doi.org/10.1175/JCLI-D-12-00515.1
Park C, Min SK, Lee D, Cha DH, Suh MS, Kang HS, Hong SY, Lee DK, Baek HJ, Boo KO, Kwon WT (2016) Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim Dyn 46(7-8):2469–2486. https://doi.org/10.1007/s00382-015-2713-z
Pincus R, Batstone CP, Hofmann RJ, Taylor KE, Glecker PJ (2008) Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models. J Geophys Res Atmos 113(D14). https://doi.org/10.1029/2007JD009334
Pörtner H, Roberts D, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Nicolai M, Okem A, Petzold J (2019) IPCC special report on the ocean and cryosphere in a changing climate. IPCC Intergovernmental Panel on Climate Change: Geneva, Switzerland
Rivera JA, Arnould G (2020) Evaluation of the ability of CMIP6 models to simulate precipitation over Southwestern South America: climatic features and long-term trends (1901–2014). Atmos Res 241:104953. https://doi.org/10.1016/j.atmosres.2020.104953
Roudier P, Sultan B, Quirion P, Berg A (2011) The impact of future climate change on West African crop yields: what does the recent literature say? Glob Environ Chang 21(3):1073–1083. https://doi.org/10.1016/j.gloenvcha.2011.04.007
Sabeerali CT, Ramu Dandi A, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118(10):4401–4420. https://doi.org/10.1002/jgrd.50403
Sachindra DA, Huang F, Barton A, Perera BJ (2014) Statistical downscaling of general circulation model outputs to precipitation-part 2: bias-correction and future projections. Int J Climatol 34(11):3282–3303. https://doi.org/10.1002/joc.3915
Shahidi A, Tajbakhsh M, Khasheie A, Khozeymehnejad H, Jafarzadeh A (2017) Uncertainty analysis of temperature and precipitation variation influenced by climate change (case study: Southern Khorasan Province). Iran J Ecohydrol 4(4):943–953. https://doi.org/10.22059/ije.2017.63204
Shashikanth K, Salvi K, Ghosh S, Rajendran K (2014) Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmos Sci Lett 15(2):79–85. https://doi.org/10.1002/asl2.466
Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. InProceedings of the 1968 23rd ACM national conference 517-524
Simonovic SP, Schardong A, Sandink D, Srivastav R (2016) A web-based tool for the development of intensity duration frequency curves under changing climate. Environ Model Softw 81:136–153. https://doi.org/10.1016/j.envsoft.2016.03.016
Sivakumar B (2011) Global climate change and its impacts on water resources planning and management: assessment and challenges. Stoch Env Res Risk A 25(4):583–600. https://doi.org/10.1007/s00477-010-0423-y
Solomon S, Manning M, Marquis M, Qin D (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge University Press
Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41(9-10):2711–2744. https://doi.org/10.1007/s00382-012-1607-6
Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26(10):3187–3208. https://doi.org/10.1175/JCLI-D-12-00321.1
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
The CMIP6 landscape (2019) Nat Clim Chang 9(10):727–727. https://doi.org/10.1038/s41558-019-0599-1
Tokarska KB, Stolpe MB, Sippel S, Fischer EM, Smith CJ, Lehner F, Knutti R (2020) Past warming trend constrains future warming in CMIP6 models. Sci Adv 6(12):eaaz9549. https://doi.org/10.1126/sciadv.aaz9549
Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T (2011) The representative concentration pathways: an overview. Clim Chang 109(1-2):5–31. https://doi.org/10.1007/s10584-011-0148-z
Watterson I, Bathols J, Heady C (2014) What influences the skill of climate models over the continents? Bull Am Meteorol Soc 95(5):689–700. https://doi.org/10.1175/BAMS-D-12-00136.1
White JW, Hoogenboom G, Kimball BA, Wall GW (2011) Methodologies for simulating impacts of climate change on crop production. Field Crop Res 124(3):357–368. https://doi.org/10.1016/j.fcr.2011.07.001
Wu T, Lu Y, Fang Y, Xin X, Li L, Li W, Jie W, Zhang J, Liu Y, Zhang L, Zhang F, Zhang Y, Wu F, Li J, Chu M, Wang Z, Shi X, Liu X, Wei M, Huang A, Zhang Y, Liu X (2019) The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6. Geosci Model Dev 12(4):1573–1600. https://doi.org/10.5194/gmd-12-1573-2019
Xu K, Yang D, Yang H, Li Z, Qin Y, Shen Y (2015) Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. J Hydrol (Amst) 526:253–264. https://doi.org/10.1016/j.jhydrol.2014.09.047
Yang Y, Bai L, Wang B, Wu J, Fu S (2019) Reliability of the global climate models during 1961–1999 in arid and semiarid regions of China. Sci Total Environ 667:271–286. https://doi.org/10.1016/j.scitotenv.2019.02.188
Yarnal B, Comrie AC, Frakes B, Brown DP (2001) Developments and prospects in synoptic climatology. Int J Climatol 21(15):1923–1950. https://doi.org/10.1002/joc.675
You L, Rosegrant MW, Wood S, Sun D (2009) Impact of growing season temperature on wheat productivity in China. Agric For Meteorol 149(6-7):1009–1014. https://doi.org/10.1016/j.agrformet.2008.12.004
Zamani Y, Hasemi Monfared S A, Hamidianpour M, Azhdari moghaddam M (2019) The Changes in Sectors Demanding Water Resources on the Basis of Climate Change and Uncertainty. Int J Clim Change: Impacts & Responses 11(4). https://doi.org/10.18848/1835-7156/CGP/v11i04/15-31
Zelinka MD, Myers TA, McCoy DT, Po-Chedley S, Caldwell PM, Ceppi P, Klein SA, Taylor KE (2020) Causes of higher climate sensitivity in CMIP6 models. Geophys Res Lett 47(1). https://doi.org/10.1029/2019GL085782
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zamani, Y., Hashemi Monfared, S., Azhdari moghaddam, M. et al. A comparison of CMIP6 and CMIP5 projections for precipitation to observational data: the case of Northeastern Iran. Theor Appl Climatol 142, 1613–1623 (2020). https://doi.org/10.1007/s00704-020-03406-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00704-020-03406-x