Skip to main content
Log in

Observed trends in daily temperature extreme indices in Aguascalientes, Mexico

Theoretical and Applied Climatology Aims and scope Submit manuscript

Cite this article


Climate change is a pernicious and irrefutable reality. The objective of this work was to analyze trends in extreme temperature indices in Aguascalientes. With RClimdex 1.0 and data on daily maximum (Tmax) and minimum temperature (Tmin), 16 temperature indices were calculated. The trend in indices was determined with the non-parametric Mann-Kendall test (p ≤ 0.05), while the rate of change was obtained with Theil-Sen’s trend estimator. Significant positive trends were observed in 72 time series of indices associated with Tmax and in 39 time series of indices associated with Tmin. Significant negative trends were observed in 22 time series of indices associated with Tmax, and in 45 time series of indices associated with Tmin. In some regions of Aguascalientes, diurnal warming is occurring; in others, warmer or less cold nights prevail. The changes in extreme temperature indices might have severe implications in the use of irrigation water, cause physiological stress in crops, promote respiratory and cardiac diseases, and improve the reproduction cycles and populations of insects. Also, the fruit production, such as guava, could be affected under the reduction of minimum temperature, and the increase in warm days where other fruit trees are cultivated can intensify the use of chemical compensators of cold. These results are of significance for long-term economic planning and design of strategies of adaptation/mitigation to climate change. In Aguascalientes, the changes observed in extreme temperature indices could be due to climate change of a bigger scale, either regional or at the watershed level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  • Abatzoglou JT, Redmond KT (2007) Asymmetry between trends in spring and autumn temperature and circulation regimes over western North America. Geophys Res Lett 34(18):1–5.

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, MG AK-T, Haylock M (2006) Global Observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(5):1–22.

    Article  Google Scholar 

  • Almazroui M, Nazrul MI, Dambul R, Jones PD (2014) Trends of temperature extremes in Saudi Arabia. Int J Climatol 34(3):808–826.

    Article  Google Scholar 

  • Baidya SK, Shrestha ML, Sheikh MM (2008) Trends in daily climatic extremes of temperature and precipitation in Nepal. Hydrol Meteorol 5(1) Nepal, pp 47–50

  • Barry AA, Caesar J, Klein-Tank AMG, Aguilar E, McSweeney C, Cyrille AM, Nikiema MP, Narcisse KB, Sima F, Stafford G, Touray LM, Ayilari-Naa JA, Mendes CL, Tounkara M, Gar-Glahn EVS, Coulibaly MS, Dieh MF, Mouhaimouni M, Oyegade JA, Sambou E, Laogbessi ET (2018) West Africa climate extremes and climate change indices. Int J Climatol 38:e921–e938.

    Article  Google Scholar 

  • Beharry SL, Clarke RM, Kumarsingh K (2015) Theor Appl Climatol. Springer Vienna 122: 783.

  • Bell JE, Brown CL, Conlon K, Herring S, Kunkel KE, Lawrimore J, Luber G, Schreck C, Smith A, Uejio C (2018) Changes in extreme events and the potential impacts on human health. J Air Waste Manage Assoc 4:265–287.

    Article  Google Scholar 

  • Brito-Castillo L, Díaz-Castro SC, Ulloa-Herrera RS (2009) Observed tendencies in maximum and minimum temperatures in Zacatecas, Mexico and possible causes. Int J Climatol: Q J Roy Meteor Soc 29(2):211–221

    Article  Google Scholar 

  • Caesar J, Alexander LV, Trewin B, Tse-ring K, Sorany L, Vuniyayawa V, Keosavang N (2011) Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005. Int J Climatol 31(6):791–801.

    Article  Google Scholar 

  • Christidis N, Stott PA (2016) Attribution analyses of temperature extremes using a set of 16 indices. Weather Clim Extrem 14:24–35.

    Article  Google Scholar 

  • CNA-WMO (2006) Escenarios del agua 2015 y 2030 en el acuífero Interestatal Ojocaliente-Aguascalientes-Encarnación: acciones para un desarrollo con sostenibilidad ambiental. Aguascalientes

  • Coligado MC, Brown DM (1974) Response of corn (Zea mays L.) in the pre-tassel initiation period to temperature and photoperiod. Agric For Meteorol 14(1–2):357–367.

    Article  Google Scholar 

  • Cutforth HW, Shaykewich CF (1989) Relationship of development rates of corn from planting to silking to air and soil temperature and to accumulated thermal units in a prairie environment. Can J Plant Sci 69(1):121–132.

    Article  Google Scholar 

  • DeGaetano AT (1996) Recent trends in maximum and minimum temperature threshold exceedences in the northeastern United States. J Clim 9(7):1646–1660

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset. J Geophys Res Atmos 118(5):2098–2118.

    Article  Google Scholar 

  • Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, (1997) Trends for the globe Emm. July, pp 18–21

  • Easterling WE, Aggarwal PK, Batima P, Brander KM, Erda L, Howden SM, Kirilenko A, Morton J, Soussana J, Schmidhuber J, Tubiello FN (2007) Food, fibre and forest products. Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Parry ML, Canziani OF, Palutikof JP, Van Dez Linden PJ, Hanson CE. Cambridge University Press, Cambridge, pp 273-313

  • Easterling DR, Kunkel EK, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extrem 11:17–27.

    Article  Google Scholar 

  • Frich P, Alexander LV, Della-Marta PM, Gleason B, Haylock M, Tank AK, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19(3):193–212

    Article  Google Scholar 

  • Gao P, Li P, Zhao B, Xu R, Zhao G, Sun W, Mu X (2017) Use of double mass curves in hydrologic benefit evaluations. Hydrol Process 31(16):1–8.

    Article  Google Scholar 

  • Ghasemi AR (2015) Changes and trends in maximum, minimum and mean temperature series in Iran. Atmos Sci Lett 16(3):366–372.

    Article  Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. New York, NY: John Wiley & Sons

  • Hatfield JL, Prueger JH (2015) Temperature extremes: effect on plant growth and development. Weather Clim Extrem 10:4–10.

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19(8):1490–1512

    Article  Google Scholar 

  • Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522(7557):465–469.

    Article  Google Scholar 

  • Instituto Nacional de Estadistica y Geografia (INEGI) (2017) Anuario Estadistico y Geografico del Estado de Aguascalientes. Aguascalientes, México

  • Intergovernmental Panel on Climate Change (IPCC) (2007) The physical science basis: working group I contribution. Fourth Assessment Report of the Intergovernmental Panel on Climate Change. volume

  • Jenni S, Bourgeois G, Laurence H, Roy G, Tremblay N (2000) Improving the prediction of processing bean maturity based on the growing-degree day approach. HortScience 35(7):1234–1237.

    Article  Google Scholar 

  • Ji Z, Kang S, Zhang D, Zhu Ch, Wu J, Xu Y (2011) Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon. Clim Dyn 36:1633–1647.

  • Jhajharia D, Singh VP (2011) Trends in temperature, diurnal temperature range and sunshine duration in northeast India. 1367:2010 June 1353–67.

  • Kendall MG (1975) Rank correlation methods, 4th edition. London: Charles Griffin

  • Knapp WW, Eggleston KL, DeGaetano AT, Vreeland K, Schultz JD (1993) Northeast climate impacts. Vol. 93:7 Northeast Regional Climate Center, 1-7

  • Kohler MA (1949) On the use of double mass analysis for testing the consistency of meteorological records and for making required adjustments. Bull Am Meteorol Soc 30(5):188–189

    Article  Google Scholar 

  • Li J, Wang MH, Ho YS (2011) Trends in research on global climate change: a science citation index expanded-based analysis. Glob Planet Chang 77(1-2):13–20.

    Article  Google Scholar 

  • López-Díaz F, Conde C, Sánchez O (2013) Analysis of indices of extreme temperature events at Apizaco, Tlaxcala, Mexico: 1952-2003. Atmosfera 26(3):349–358.

    Article  Google Scholar 

  • Lyman R, Longnecker M (2001) An introduction to statistical methods and data analysis, 5th edn. Wadsworth, Belmont

    Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

  • Maciel P, Hernandez D, Macias VLM (2007) Requerimientos hidricos de cultivos forrajeros en la Unidad de riego “El Niagara”, Aguascalientes. Folleto tecnico numero 30. INIFAP-CIRNOC-Campo Experimental Pabellon, Pabellon de Arteaga, Ags. Mexico. pp 27

  • National Academies of Sciences, Engineering, and Medicine (2016) Attribution of extreme weather events in the context of climate change.

  • New M, Hewitson B, Stephenson DB, Tsiga A, Kruger A, Manhique A, Gomez B (2006) Evidence of trends in daily climate extremes over southern and west Africa. J Geophys Res Atmos 111:14 1–11.

  • Padilla R., Gonzalez JS, Perales de la C (2010) Nuevas variedades de guayaba (Psidium guajava L.). Folleto tecnico número 42. INIFAP-CIRNOC-Campo Experimental Pabellon, Pabelllon de Arteaga, Ags. Mexico. pp 28

  • Peterson TC, Folland C, Gruza G, Hogg Wi, Mokssit A, Plummer N (2001) Report on the activities of the working group on climate change detection and related rapporteurs 1998–2001. Climate Change Detection, Number March 143. WMO, Rep. WCDMP-47, WMO-TD 1071

  • Price C, Michaelides S, Pashiardis S, Alpert P (1999) Long term changes in diurnal temperature range in Cyprus. Atmos Res 51(2):85–98.

    Article  Google Scholar 

  • Rahimi M, Hejabi S (2018) Spatial and temporal analysis of trends in extreme temperature indices in Iran over the period 1960–2014. Int J Climatol 38(1):272–282.

    Article  Google Scholar 

  • Raza MM, Muhammad AK, Muhammad A, Muhammad S, Zeeshan S, Jamil S, Ehtisham H (2015) Impact of global warming on insects. Arch Phytopathol Plant Protect 48(1):84–94.

    Article  Google Scholar 

  • Río S, Penas Á, Fraile R (2005) Analysis of recent climatic variations in Castile and Leon (Spain). Atmos Res 73(1–2):69–85.

    Article  Google Scholar 

  • Roderick ML, Farquhar G (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(5597):1410–1411.

    Article  Google Scholar 

  • Ruíz-Álvarez O, Espejel-Trujano D, Ontiveros-Capurata RE, Enciso J, Galindo-Reyes MA, Quesada-Parga ML, Grageda-Grageda J, Ramos-Reyes R, Ruiz-Corral JA (2016) Tendencia de temperaturas maximas y minimas mensuales en Aguascalientes, Mexico. Rev Mex Ciencias Agricolas 13:2535–2549

  • Ruíz-Álvarez O, Singh VP, Enciso-Medina J, Munster C, Kaiser R, Ontiveros-Capurata RE, Diaz-Garcia LA, Costa Dos Santos CA (2018) Correction to: spatio-temporal trends in monthly pan evaporation in Aguascalientes, Mexico. Theor Appl Climatol:1–4.

  • Ruml M, Gregorić E, Vujadinović M, Radovanović S, Matović G, Vuković A, Počuča V, Stojičić D (2017) Observed changes of temperature extremes in Serbia over the period 1961 − 2010. Atmos Res 183:26–41.

    Article  Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Clim 17(20):4099–4107.<4099:OTACIT>2.0.CO;2

    Article  Google Scholar 

  • Santos C, Christopher MUN, Tantravahi VRR, Bernardo BS (2011) Trends in indices for extremes in daily temperature and precipitation over Utah, USA. Int J Climatol 31(12):1813–1822.

    Article  Google Scholar 

  • Searcy JK, Hardison CH (1960) Double-mass curves, Manual of hydrology: Part 1. General Surface-Water Techniques

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63:1379–1389.

  • Servicio de Información Agroalimentaria y Pesquera (SIAP) (2019) Producción Agrícola. Accessed 10 Dec 2018

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In Proceedings of the 1968 23rd ACM national conference on - (pp. 517–524). New York: ACM Press.

  • Shrestha AB, Sagar RB, Aseem RS, Chu D, Ashwini K (2017) Observed trends and changes in daily temperature and precipitation extremes over the Koshi River basin 1975–2010. Int J Climatol 37(2):1066–1083.

    Article  Google Scholar 

  • Snyder RL, Melo-Abreu JP (2010) Protección Contra Las Heladas: Fundamentos, Práctica y Economía. Vol. 1. Fao

  • Summerfield RJ, Roberts EH, Ellis RH, Lawn RJ (1991) Towards the reliable prediction of time to flowering in six annual crops. I. The development of simple models for fluctuating field environments. Exp Agric 27(1):11–31

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of Koninklijke Nederlandse Akademie van Wetenschappen A, vol. 53, pp. 1397–1412

  • Vincent LA, Peterson TC, Barros VR, Marino MB, Rusticucci M, Carrasco G, Ramirez E (2005) Observed trends in indices of daily temperature extremes in South America 1960-2000. J Clim 18(23):5011–5023.

    Article  Google Scholar 

  • Wang M, He G, Zhang Z, Wang G, Zhang Z, Cao X, Zhijie W, Liu X (2017) Comparison of spatial interpolation and regression analysis models for an estimation of monthly near surface air temperature in China. Remote Sens 9(12):1278.

    Article  Google Scholar 

  • Xi Y, Chiyuan M, Jingwen W, Qingyun D, Xiaohui L, Hu L (2018) Spatiotemporal changes in extreme temperature and precipitation events in the three-rivers headwater region, China. J Geophys Res Atmos 123.

  • Xu C, Wang J, Li Q (2018) A new method for temperature spatial interpolation based on sparse historical stations. J Clim 31(5):1757–1770.

    Article  Google Scholar 

  • Yamamura K, Kiritani K (1998) A Simple Method To Estimate The Potential Increase In The Number Of Generations Under Global Warming In Temperate Zones. Appl Entomol Zool 33(2):289–298.

    Article  Google Scholar 

  • Yang X, Xie X, Liu DL, Ji F, Wang L (2015) Spatial interpolation of daily rainfall data for local climate impact assessment over greater Sydney region. Adv Meteorol 2015:1–12.

    Article  Google Scholar 

  • Ye JS, Yan HG, Feng Z, Jiao R, Xiao KB, Yang Z (2018) Which temperature and precipitation extremes best explain the variation of warm versus cold years and wet versus dry years. J Clim 31(1):45–59.

    Article  Google Scholar 

  • You Q, Min J, Jiao Y, Sillanpää M, Kang S (2016) Observed trend of diurnal temperature range in the Tibetan Plateau in recent decades. Int J Climatol 36:2633–2643.

  • Zahraei A, Eslamian S, Rizi AS, Azam N, Soltani M, Mousavi M, Pazdar S, Ostad-Ali-Askari K (2019) Mapping of temperature trend slope in Iran’s Zayanderud River basin: a comparison of interpolation methods. Am J Eng Appl Sci 12(2):247–258.

    Article  Google Scholar 

  • Zhang X, Yang F (2004) RClimDex (1.0) User Guide. Climate Research Branch Environment Canada: Downsview, Ontario, Canada

  • Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res Atmos 110(22):1–12.

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Francis WZ (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2(6):851–870.

    Article  Google Scholar 

  • Zhang X, Yang F, Rodney Ch (2015) Introduction to RClimDex 1–24

Download references


The first author wants to thank the Federal Mexican Government and Consejo Nacional de Ciencia y Tecnologia (CONACyT) from Mexico for the scholarship granted to carry out his doctoral studies. Thanks to the Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), especially to the Experimental Station Pabellon (Pabellon de Arteaga, Aguascalientes) for the permit, the international commission, and the stipend to complement the funding for the realization of his studies. In the same way, all the gratitude to the Ph.D. Yang Feng from the Climate Research Branch of Meteorological Service of Canada for providing the software. Finally, our total gratefulness to the National Meteorological Service (SMN) of the Comision Nacional del Agua (CNA) and their staff of the Aguascalientes offices for sharing the databases and the information related to its management.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Osias Ruiz-Alvarez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz-Alvarez, O., Singh, V.P., Enciso-Medina, J. et al. Observed trends in daily temperature extreme indices in Aguascalientes, Mexico. Theor Appl Climatol 142, 1425–1445 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: