Skip to main content

Advertisement

Log in

Agricultural zoning as tool for expansion of cassava in climate change scenarios

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Improvement of planting season and crop growth time, considering climatic and soil needs of plants, is important to increase cassava (Manihot esculenta) production in Midwestern Brazil. Thus, we sought to develop an agricultural zoning for cassava cultivation in the Midwest of Brazil in different climate change scenarios. Mean air temperature and precipitation data from localities of the Midwest of Brazil were obtained from the Brazilian National Institute of Meteorology (INMET). Clay (%) data from localities of the Midwest of Brazil were obtained from SoilGrids. Regions where the air temperature was within the range from 20 to 27 °C were considered climatically favorable for commercial exploitation of cassava, in addition to precipitation between 1000 and 1500 mm year−1, and clay content was less than ≤ 35%. Moreover, regions with air temperature below 16 °C and above 38 °C, precipitation below 1000 mm and above 1500 mm year−1, and clay content > 35% were considered unsuitable for cassava cultivation. Raster or matrix images, corresponding to mean annual air temperature, annual precipitation, and clay (soil), were superimposed to create cassava suitability classes, according to crop requirements. The climate change scenarios were established by changing the air temperature (°C) and rainfall (mm). The air temperature was increased by 1.5, 3.0, 4.5, and 6.0 °C as adopted by Pirttioja et al. (Clim Res 65:87–105, 2015). We changed in precipitation − 30, − 15, + 15, and 30% according to the future projections simulated by the IPCC (2014). Maps were made using geographic information systems. In the states of Mato Grosso do Sul, Mato Grosso, and Goiás, mean precipitation was around 1200 to 4000 mm year−1. Northern Mato Grosso showed the highest annual precipitation, with values above 3500 mm. A large extension of the Midwest region of Brazil is climatically and soil favorable for cassava. The Midwest is a region with high rainfall, so we recommend planting in well-drained soils to avoid phytosanitary problems. Producers taking this care can plant cassava in 86.6% of the territory. The climate change scenarios demonstrated different Agriculture zonings for cassava in the Midwest of Brazil. With the increase in air temperature, greater marginal classes occurred, but cassava is resistant to this condition. But, this increase in temperature can reduce the cycle and consequently reduce production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adefisan E (2018) Climate change impact on rainfall and temperature distributions over West Africa from three IPCC scenarios. J Earth Sci Clim Change 09: https://doi.org/10.4172/2157-7617.1000476

  • Almeida TS, Calijuri ML, Pinto LB (2013) Zoneamento agro-climático da cana-de-açúcar para o estado de Minas Gerais com base em regressões múltiplas. Rev bras meteorol 28:352–355. https://doi.org/10.1590/S0102-77862013000300011

    Article  Google Scholar 

  • Alves AAC (2006) Cassava physiology. In: Souza LS, ARN F, PLP M, WMG F (eds) Cassava socioeconomic and agronomic aspects, 1a edn. Embrapa Mandioca e Fruticultura Tropical, Cruz das Almas, pp 138–169

    Google Scholar 

  • Arshad M, Amjath-Babu TS, Krupnik TJ, Aravindakshan S, Abbas A, Kächele H, Müller K (2017) Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. Paddy Water Environ 15:249–261. https://doi.org/10.1007/s10333-016-0544-0

    Article  Google Scholar 

  • Atwijukire E, Hawumba JF, Baguma Y, Wembabazi E, Esuma W, Kawuki RS, Nuwamanya E (2019) Starch quality traits of improved provitamin A cassava (Manihot esculenta Crantz). Heliyon 5:e01215. https://doi.org/10.1016/j.heliyon.2019.e01215

    Article  Google Scholar 

  • Ayoade JO (1983) Introduction to climatology for the tropics. Wiley, Chichester, p 258

    Google Scholar 

  • Bos L (1978) Symptoms of virus diseases in plants. 3a edn. Wageningen, Centre for Agricultural Publishing and Documentation, pp. 225

  • Bray EA (1994) Alterations in gene expression in response to water deficit. In: Basra AS (ed) Stress-induced gene expression in plants, Hardwood Academica Publishers, 1a edn, Chur, pp 1–23

  • Castro CN (2014) Agriculture in the Midwest: limitations to future development and challenges, Institute of Applied Economic Research

  • Chatzopoulos T, Lippert C (2015) Adaptation and climate change impacts: a structural Ricardian analysis of farm types in Germany. J Agric Econ 66:537–554. https://doi.org/10.1111/1477-9552.12098

    Article  Google Scholar 

  • de Aparecido LEO, Batista RM, da SC de Moraes JR et al (2019) Agricultural zoning of climate risk for Physalis peruviana cultivation in Southeastern Brazil. Pesq agropec bras 54:e00057. https://doi.org/10.1590/s1678-3921.pab2019.v54.00057

    Article  Google Scholar 

  • de Morisson VM, de Fátima RD (2012) Topodata: Brazilian full coverage refinement of SRTM data. Appl Geogr 32:300–309. https://doi.org/10.1016/j.apgeog.2011.05.004

    Article  Google Scholar 

  • de Muniz MFS, de Andrade FWR, Queiroz FM et al (2006) Caracterização de isolados de Phytophthora drechsleri, agente causal da podridão mole de raízes de mandioca. Fitopatol Bras 31:195–198. https://doi.org/10.1590/S0100-41582006000200013

    Article  Google Scholar 

  • de Oliveira Aparecido LE, Moreto VB, de Souza RG et al (2018) Climatic potential for summer and winter wine production: climatic potential for summer and winter wine production. J Sci Food Agric 98:1280–1290. https://doi.org/10.1002/jsfa.8575

    Article  Google Scholar 

  • de Oliveira Aparecido LE, de Souza RG, da Silva Cabral De Moraes JR et al (2020) Machine learning algorithms for forecasting the incidence of Coffea arabica pests and diseases. Int J Biometeorol 64:671–688. https://doi.org/10.1007/s00484-019-01856-1

    Article  Google Scholar 

  • de Oliveira EJ, de Oliveira SAS, Otto C, Alicai T, de Freitas JPX, Cortes DFM, Pariyo A, Liri C, Adiga G, Balmer A, Klauser D, Robinson M (2020) A novel seed treatment-based multiplication approach for cassava planting material. PLoS One 15:e0229943. https://doi.org/10.1371/journal.pone.0229943

    Article  Google Scholar 

  • Doorenbos J, Pruitt WD (1977) Crop water requirements. FAO Irrigation and Drainage Paper no 24, p 144

  • El-Sharkawy MA (2007) Physiological characteristics of cassava tolerance to prolonged drought in the tropics: implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz J Plant Physiol 19:257–286. https://doi.org/10.1590/S1677-04202007000400003

    Article  Google Scholar 

  • FAO (2001) The state of food and agriculture 2001. Food & Agriculture Org

  • Gabriel LF, Streck NA, Roberti DR, Chielle ZG, Uhlmann LO, da Silva MR, da Silva SD (2014a) Simulating cassava growth and yield under potential conditions in southern Brazil. Agron J 106:1119–1137. https://doi.org/10.2134/agronj2013.0187

    Article  Google Scholar 

  • Gabriel LF, Streck NA, Uhlmann LO et al (2014b) Climate change and its effects on cassava crop/ Mudanca climatica e seus efeitos na cultura da mandioca. Revista Brasileira de Engenharia Agricola e Ambiental 18:90+

    Article  Google Scholar 

  • Guimarães EN, Leme HJC (2002) Historical characterization and spatial configuration of the productive structure of the Midwest. In: Hogan DJ, Carmo RL, JMP C, Baeninger R (eds) Migração e Ambiente no Centro-Oeste. NEPO, Campinas, pp 89–95

    Google Scholar 

  • Helfand SM, Magalhães MM, Rada NE (2015) Brazil’s agricultural total factor productivity growth by farm size. Inter-American Development Bank

  • Hengl T, Mendes JJ, Heuvelink GBM et al (2017) SoilGrids250m: global gridded soil information based on machine learning. PLoS One 12(2):e0169748

    Article  Google Scholar 

  • Hernandez-Espinoza LH, Barrios-Masias FH (2020) Physiological and anatomical changes in tomato roots in response to low water stress. Sci Hortic 265:109208. https://doi.org/10.1016/j.scienta.2020.109208

    Article  Google Scholar 

  • IBGE (2018) Sistema IBGE de Recuperação Automática - SIDRA: Produção Agrícola Municipal. https://sidra.ibge.gov.br/home/pnadcm. Accessed 28 May 2020

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • IPCC (2018) Global warming of 1.5°C, summary for policymakers. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change

  • Jiang D, Chen S, Hao M, Fu J, Ding F (2018) Assessing the sustainable development of bioenergy from cassava within “Water-Energy-Food” Nexus framework in China. Sustainability 10:2153. https://doi.org/10.3390/su10072153

    Article  Google Scholar 

  • Klering EV, Fontana DC, Berlato MA, Cargnelutti Filho A (2008) Modelagem agrometeorológica do rendimento de arroz irrigado no Rio Grande do Sul. Pesq agropec bras 43:549–558. https://doi.org/10.1590/S0100-204X2008000500001

    Article  Google Scholar 

  • Moreto VB, Rolim GDS (2015) Agrometeorological models for groundnut crop yield forecasting in the Jaboticabal, São Paulo State region, Brazil. Acta Sci Agron 37:403. https://doi.org/10.4025/actasciagron.v37i4.19766

    Article  Google Scholar 

  • Moreto VB, de Aparecido LEO, de Rolim GS, da Silva Cabral de Moraes JR (2018) Agrometeorological models for estimating sweet cassava yield. Pesqui Agropecu Trop 48:43–51. https://doi.org/10.1590/1983-40632018v4850451

    Article  Google Scholar 

  • Nabati J, Nezami A, Neamatollahi E, Akbari M (2020) GIS-based agro-ecological zoning for crop suitability using fuzzy inference system in semi-arid regions. Ecol Indic 117:106646. https://doi.org/10.1016/j.ecolind.2020.106646

    Article  Google Scholar 

  • Peixoto CP (2009) Cassava. In: Castro PRC (ed) Ecophysiology of annual crops, 1a edn. Nobel, Piracicaba, pp 109–126

    Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorology: fundamentals and practical applications. Agropecuária, Guaíba, p 478

    Google Scholar 

  • Pilau FG, Marin FR, Camargo MBP, Assad ED, Silveira Pinto H, Barbarisi BF (2007) Agroclimatic zoning of rubber cultivation for the Southeast and Midwest regions of Brazil. Revista Brasileira de Agrometeorologia 15(2):161–168

    Google Scholar 

  • Pipatsitee P, Eiumnoh A, Praseartkul P, Taota K, Kongpugdee S, Sakulleerungroj K, Cha-um S (2018) Application of infrared thermography to assess cassava physiology under water deficit condition. Plant Prod Sci 21:398–406. https://doi.org/10.1080/1343943X.2018.1530943

    Article  Google Scholar 

  • Pirttioja N, Carter T, Fronzek S, Bindi M, Hoffmann H, Palosuo T, Ruiz-Ramos M, Tao F, Trnka M, Acutis M, Asseng S, Baranowski P, Basso B, Bodin P, Buis S, Cammarano D, Deligios P, Destain MF, Dumont B, Ewert F, Ferrise R, François L, Gaiser T, Hlavinka P, Jacquemin I, Kersebaum KC, Kollas C, Krzyszczak J, Lorite IJ, Minet J, Minguez MI, Montesino M, Moriondo M, Müller C, Nendel C, Öztürk I, Perego A, Rodríguez A, Ruane AC, Ruget F, Sanna M, Semenov MA, Slawinski C, Stratonovitch P, Supit I, Waha K, Wang E, Wu L, Zhao Z, Rötter RP (2015) Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces. Clim Res 65:87–105. https://doi.org/10.3354/cr01322

    Article  Google Scholar 

  • Quaye F, Nadolnyak D, Hartarska V (2018) Climate change impacts on farmland values in the Southeast United States. Sustainability 10:3426. https://doi.org/10.3390/su10103426

    Article  Google Scholar 

  • Ramcharan A, Baranowski K, McCloskey P, Ahmed B, Legg J, Hughes DP (2017) Deep learning for image-based cassava disease detection. Front Plant Sci 8:1852. https://doi.org/10.3389/fpls.2017.01852

    Article  Google Scholar 

  • Rocha VPC, Gonçalves-Vidigal MC, Ortiz AHT, Valentini G, Ferreira RCU, Gonçalves TM, Lacanallo GF, Vidigal Filho PS (2020) Population structure and genetic diversity in sweet cassava accessions in Paraná and Santa Catarina, Brazil. Plant Mol Biol Report 38:25–38. https://doi.org/10.1007/s11105-019-01175-0

    Article  Google Scholar 

  • Sentelhas PC, Monteiro JEBA (2009) Agrometeorology of crops, 3a edn. National Institute of Meteorology, Brasília

    Google Scholar 

  • Silva DV, Santos JB, Ferreira EA, Silva AA, França AC, Sediyama T (2012) Manejo de plantas daninhas na cultura da mandioca. Planta daninha 30:901–910. https://doi.org/10.1590/S0100-83582012000400025

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Science and Technology of Mato Grosso do Sul - Campus of Naviraí, IFMS - Federal Institute of Education, Naviraí, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas Eduardo de Oliveira Aparecido.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Aparecido, L.E., da Silva Cabral de Moraes, J.R., de Meneses, K.C. et al. Agricultural zoning as tool for expansion of cassava in climate change scenarios. Theor Appl Climatol 142, 1085–1095 (2020). https://doi.org/10.1007/s00704-020-03367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03367-1

Navigation