Abghari H, Tabari H, Hosseinzadeh Talaee P (2013) River flow trends in the west of Iran during the past 40years: impact of precipitation variability. Glob Planet Change 101:52–60. https://doi.org/10.1016/j.gloplacha.2012.12.003
Article
Google Scholar
Ali A, Lebel T, Amani A (2005) Rainfall estimation in the Sahel. Part I: Error function. J Appl Meteorol 44(11):1691–1706
Allen RG, Pereira LS, Raes D, Smith M (1998) No title. Crop Evapotranspiration Guidel Comput Crop Water Requir
Azorin-Molina C, Vicente-Serrano SM, Sanchez-Lorenzo A, McVicar TR, Morán-Tejeda E, Revuelto J, el Kenawy A, Martín-Hernández N, Tomas-Burguera M (2015) Atmospheric evaporative demand observations, estimates and driving factors in Spain (1961-2011). J Hydrol 523:262–277. https://doi.org/10.1016/j.jhydrol.2015.01.046
Article
Google Scholar
Azorin-Molina C, Rehman S, Guijarro JA et al (2018) Recent trends in wind speed across Saudi Arabia, 1978–2013: a break in the stilling. Int J Climatol 38. https://doi.org/10.1002/joc.5423
Bachmair S, Kohn I, Stahl K (2015) Exploring the link between drought indicators and impacts. Nat Hazards Earth Syst Sci 15:1381–1397. https://doi.org/10.5194/nhess-15-1381-2015
Article
Google Scholar
Bachmair S, Svensson C, Hannaford J, Barker LJ, Stahl K (2016) A quantitative analysis to objectively appraise drought indicators and model drought impacts. Hydrol Earth Syst Sci 20:2589–2609. https://doi.org/10.5194/hess-20-2589-2016
Article
Google Scholar
Bachmair S, Tanguy M, Hannaford J, Stahl K (2018) How well do meteorological indicators represent agricultural and forest drought across Europe? Environ Res Lett 13. https://doi.org/10.1088/1748-9326/aaafda
Banimahd SA, Khalili D (2013) Factors influencing Markov chains predictability characteristics, utilizing SPI, RDI, EDI and SPEI drought indicesin different climatic zones. Water resources management 27(11):3911–3928
Article
Google Scholar
Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34. https://doi.org/10.1002/joc.3887
Bosilovich MG, Robertson FR, Stackhouse PW (2020) El Niño-related tropical land surface water and energy response in MERRA-2. J Clim 33:1155–1176. https://doi.org/10.1175/JCLI-D-19-0231.1
Article
Google Scholar
Breña-Naranjo J, Laverde BM, Pedrozo-Acuña A (2016) Changes in pan evaporation in Mexico from 1961 to 2010. Int J Climatol 37:204–213. https://doi.org/10.1002/joc.4698
Article
Google Scholar
Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58. https://doi.org/10.1038/nclimate1633
Article
Google Scholar
Dai A, Zhao T, Chen J (2018) Climate change and drought: a precipitation and evaporation perspective. Curr Clim Chang Reports 4:301–312. https://doi.org/10.1007/s40641-018-0101-6
Article
Google Scholar
Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh VP, Kahya E (2011) Trends in reference crop evapotranspiration over Iran. J Hydrol 399:422–433. https://doi.org/10.1016/j.jhydrol.2011.01.021
Article
Google Scholar
Erfanian A, Fu R (2019) The role of spring dry zonal advection in summer drought onset over the US Great Plains. Atmos Chem Phys 19:15199–15216. https://doi.org/10.5194/acp-19-15199-2019
Article
Google Scholar
Fathian F, Morid S, Kahya E (2014) Identification of trends in hydrological and climatic variables in Urmia Lake basin, Iran. Theor Appl Climatol 119:443–464. https://doi.org/10.1007/s00704-014-1120-4
Article
Google Scholar
Ficklin DL, Maxwell JT, Letsinger SL, Gholizadeh H (2015) A climatic deconstruction of recent drought trends in the United States. Environ Res Lett 10:10. https://doi.org/10.1088/1748-9326/10/4/044009
Article
Google Scholar
García-Herrera R, Garrido-Pérez JM, Barriopedro D, Ordóñez C et al (2019) The European 2016/2017 drought. J Clim 32:3169–3187
Article
Google Scholar
Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D (2020) The Central Chile mega drought (2010–2018): a climate dynamics perspective. Int J Climatol 40:421–439. https://doi.org/10.1002/joc.6219
Article
Google Scholar
Gimeno L, Drumond A, Nieto R, Trigo RM, Stohl A (2010) On the origin of continental precipitation. Geophys Res Lett 37. https://doi.org/10.1029/2010GL043712
Gocic M, Trajkovic S (2014) Analysis of trends in reference evapotranspiration data in a humid climate. Hydrol Sci J 59:165–180. https://doi.org/10.1080/02626667.2013.798659
Article
Google Scholar
González-Hidalgo JC, Vicente-Serrano SM, Peña-Angulo D, Salinas C, Tomas-Burguera M, Beguería S (2018) High-resolution spatio-temporal analyses of drought episodes in the western Mediterranean basin (Spanish mainland, Iberian Peninsula). Acta Geophys 66:381–392. https://doi.org/10.1007/s11600-018-0138-x
Article
Google Scholar
Hamed KhH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelate d ata. J. Hydrol. 204:182–196
Article
Google Scholar
Hawkins E, Ortega P, Suckling E, Schurer A, Hegerl G, Jones P, Joshi M, Osborn TJ, Masson-Delmotte V, Mignot J, Thorne P, van Oldenborgh GJ (2017) Estimating changes in global temperature since the preindustrial period. Bull Am Meteorol Soc 98:1841–1856. https://doi.org/10.1175/BAMS-D-16-0007.1
Article
Google Scholar
Hersbach H, Bell W, Berrisford P et al (2019) Global reanalysis: goodbye ERA-interim, hello ERA5. https://doi.org/10.21957/VF291HEHD7
Hosseinzadeh Talaee P, Shifteh Some’e B, Sobhan Ardakani S (2014a) Time trend and change point of reference evapotranspiration over Iran. Theor Appl Climatol 116:639–647. https://doi.org/10.1007/s00704-013-0978-x
Article
Google Scholar
Hosseinzadeh Talaee P, Tabari H, Abghari H (2014b) Pan evaporation and reference evapotranspiration trend detection in western Iran with consideration of data persistence. Hydrol Res 45:213–225. https://doi.org/10.2166/nh.2013.058
Article
Google Scholar
Jhajharia D, Kumar R, Dabral PP, Singh VP, Choudhary RR, Dinpashoh Y (2015) Reference evapotranspiration under changing climate over the Thar Desert in India. Meteorol Appl 22:425–435. https://doi.org/10.1002/met.1471
Article
Google Scholar
Kazemzadeh M, Malekian A (2016) Spatial characteristics and temporal trends of meteorological and hydrological droughts in northwestern Iran. Nat Hazards 80:191–210. https://doi.org/10.1007/s11069-015-1964-7
Article
Google Scholar
Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S (2011) Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resour Manag 25:1737–1757. https://doi.org/10.1007/s11269-010-9772-z
Article
Google Scholar
Khan N, Sachindra DA, Shahid S, Ahmed K, Shiru MS, Nawaz N (2020) Prediction of droughts over Pakistan using machine learning algorithms. Adv Water Resour 139:103562. https://doi.org/10.1016/j.advwatres.2020.103562
Article
Google Scholar
Kousari MR, Asadi Zarch MA (2011) Minimum, maximum, and mean annual temperatures, relative humidity, and precipitation trends in arid andsemi-arid regions of Iran. Arabian Journal of Geosciences 4(5–6):907–914
Article
Google Scholar
Kousari MR, Ahani H (2012) An investigation on reference crop evapotranspiration trend from 1975 to 2005 in Iran. Int J Climatol 32:2387–2402. https://doi.org/10.1002/joc.3404
Article
Google Scholar
Kousari MR, Asadi Zarch MA, Ahani H, Hakimelahi H (2013) A survey of temporal and spatial reference crop evapotranspiration trends in Iran from 1960 to 2005. Clim Chang 120:277–298. https://doi.org/10.1007/s10584-013-0821-5
Article
Google Scholar
Kousari MR, Dastorani MT, Niazi Y, Soheili E, Hayatzadeh M, Chezgi J (2014) Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water Resour Manag 28:1857–1872. https://doi.org/10.1007/s11269-014-0558-6
Article
Google Scholar
Malvić T, Ivšinović J, Velić J, Rajić R (2019) Kriging with a Small Number of Data Points Supported by Jack-Knifing, a Case Study in the SavaDepression (Northern Croatia). Geosciences 9(1):1–24
Article
Google Scholar
Maes WH, Gentine P, Verhoest NEC, Miralles DG (2019) Potential evaporation at eddy-covariance sites across the globe. Hydrol Earth Syst Sci 2019:925–948. https://doi.org/10.5194/hess-2017-682
Article
Google Scholar
Martinez-Cruz DA, Gutiérrez M, Alarcón-Herrera MT (2020) Spatial and temporal analysis of precipitation and drought trends using the climate forecast system reanalysis (CFSR). Springer Clim:129–146
Masih I, Uhlenbrook S, Maskey S, Smakhtin V (2011) Streamflow trends and climate linkages in the Zagros Mountains, Iran. Clim Chang 104:317–338. https://doi.org/10.1007/s10584-009-9793-x
Article
Google Scholar
McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. Eighth Conf Appl Climatol:179–184
McMahon TA, Peel MC, Lowe L et al (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331–1363. https://doi.org/10.5194/hess-17-1331-2013
Article
Google Scholar
McVicar TR, Roderick ML, Donohue RJ et al (2012) Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J Hydrol 416–417:182–205. https://doi.org/10.1016/j.jhydrol.2011.10.024
Article
Google Scholar
Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S (2013) Analysis of meteorological drought in northwest Iran using theJoint Deficit Index. Journal of Hydrology 492:35–48
Miralles D, Gentine P, Seneviratne SI, Teuling AJ (2019) Land-atmospheric feedbacks during droughts and heatwaves: state of the science and current challenges. Ann N Y Acad Sci 8:469
Google Scholar
Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012
Article
Google Scholar
Moradi HR, Rajabi M, Faragzadeh M (2011) Investigation of meteorological drought characteristics in Fars province. Iran. Catena 84(1–2):35–46
Article
Google Scholar
Pebesma EJ (2004) Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30:683–691
Article
Google Scholar
Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20. https://doi.org/10.1016/j.agwat.2014.07.031
Article
Google Scholar
Piticar A, Mihăilă D, Lazurca LG, Bistricean PI, Puţuntică A, Briciu AE (2016) Spatiotemporal distribution of reference evapotranspiration in the Republic of Moldova. Theor Appl Climatol 124:1133–1144. https://doi.org/10.1007/s00704-015-1490-2
Article
Google Scholar
Raziei T, Pereira LS (2013) Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agric Water Manag 126:104–118. https://doi.org/10.1016/j.agwat.2013.05.003
Article
Google Scholar
Raziei T, Saghafian B, Pereira Paulo AA., LS and Bordi I, (2009) Spatial patterns and temporal variability of drought in western Iran. WaterResources Management 23(3):439–455
Google Scholar
Rezaei R, Gholifar E, Safa L (2016) Identifying and explaining the effects of drought in rural areas in Iran from viewpoints of farmers (Case Study: Esfejin village, Zanjan country), desert, 21(1): 56–64
Raziei T, Martins DS, Bordi I, Santos JF, Portela MM, Pereira LS, Sutera A (2015) SPI modes of drought spatial and temporal variability inPortugal: Comparing observations, PT02 and GPCC gridded datasets. Water resources management 29(2):487–504
Article
Google Scholar
Roderick ML, Farquhar GD (2002) The cause of decreased pan evaporation over the past 50 years. Science 298(80):1410–1411. https://doi.org/10.1126/science.1075390
Article
Google Scholar
Saghafian B, Mehdikhani H (2014) Drought characterization using a new copula-based trivariate approach. Natural hazards 72(3):1391–1407
Article
Google Scholar
Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth-Science Rev 99:125–161. https://doi.org/10.1016/j.earscirev.2010.02.004
Article
Google Scholar
Shadmani M, Marofi S, Roknian M (2012) Trend analysis in reference evapotranspiration using Mann-Kendall and Spearman’s rho tests in arid regions of Iran. Water Resour Manag 26:211–224. https://doi.org/10.1007/s11269-011-9913-z
Article
Google Scholar
Sheffield J, Wood EF, Roderick ML (2012) Little change in global drought over the past 60 years. Nature 491:435–438. https://doi.org/10.1038/nature11575
Article
Google Scholar
Sherwood S, Fu Q (2014) A drier future? Science 343(80):737–739. https://doi.org/10.1126/science.1247620
Article
Google Scholar
Spinoni J, Barbosa P, De Jager A et al (2019) A new global database of meteorological drought events from 1951 to 2016. J Hydrol Reg Stud 22:100593. https://doi.org/10.1016/J.EJRH.2019.100593
Article
Google Scholar
Stephens CM, McVicar TR, Johnson FM, Marshall LA (2018) Revisiting Pan evaporation trends in Australia a decade on. Geophys Res Lett 45:11,111–164,172. https://doi.org/10.1029/2018GL079332
Article
Google Scholar
Sun Z, Ouyang Z, Zhao J, Li S, Zhang X, Ren W (2018) Recent rebound in observational large-pan evaporation driven by heat wave and droughts by the lower Yellow River. J Hydrol 565:237–247. https://doi.org/10.1016/J.JHYDROL.2018.08.014
Article
Google Scholar
Tabari H, Marofi S (2011) Changes of pan evaporation in the west of Iran. Water Resources Management 25(1):97–111
Article
Google Scholar
Tabari H, Hosseinzadeh Talaee PH (2011) recent trends of mean maximum and minimum air temperatures in the western half of Iran. Meteorologyand atmospheric physics 111(3–4):121–131
Article
Google Scholar
Tabari H, Marofi S, Aeini A, Talaee PH, Mohammadi K (2011) Trend analysis of reference evapotranspiration in the western half of Iran. Agric For Meteorol 151:128–136. https://doi.org/10.1016/j.agrformet.2010.09.009
Article
Google Scholar
Tabari H, Nikbakht J, Talaee PH (2012) Identification of trend in reference evapotranspiration series with serial dependence in Iran. Water Resour Manag 26:2219–2232. https://doi.org/10.1007/s11269-012-0011-7
Article
Google Scholar
Tajbakhsh S, Eisakhani N, Kazemi A (2015) Assessment of meteorological drought in Iran using standardized precipitation and evapotranspiration index (SPEI). J Earth Sp Phys 41:171–181
Google Scholar
Tan C, Yang J, Li M (2015) Temporal-spatial variation of drought indicated by SPI and SPEI in Ningxia Hui autonomous region, China. Atmosphere (Basel) 6:1399–1421. https://doi.org/10.3390/atmos6101399
Article
Google Scholar
Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22
Article
Google Scholar
Vautard R, Cattiaux J, Yiou P, Thépaut JN, Ciais P (2010) Northern hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat Geosci 3:756–761. https://doi.org/10.1038/ngeo979
Article
Google Scholar
Vicente-Serrano SM (2016) Foreword: Drought complexity and assessment under climate change conditions. Cuad Investig Geogr 42. https://doi.org/10.18172/cig.2961
Vicente-Serrano SM, Beguería S (2016) Comment on “candidate distributions for climatological drought indices (SPI and SPEI)” by James H. Stagge et al Int J Climatol 36:2120–2131. https://doi.org/10.1002/joc.4474
Article
Google Scholar
Vicente-Serrano SM, Beguería S, López-Moreno JI et al (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Article
Google Scholar
Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16:1–27. https://doi.org/10.1175/2012EI000434.1
Article
Google Scholar
Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, Morán-Tejeda E, López-Moreno JI, Espejo F (2014a) Sensitivity of reference evapotranspiration to changes in meteorological parameters in Spain (1961-2011). Water Resour Res 50:8458–8480. https://doi.org/10.1002/2014WR015427
Article
Google Scholar
Vicente-Serrano SM, Azorin-Molina C, Sanchez-Lorenzo A, Revuelto J, López-Moreno JI, González-Hidalgo JC, Moran-Tejeda E, Espejo F (2014b) Reference evapotranspiration variability and trends in Spain, 1961-2011. Glob Planet Change 121:26–40. https://doi.org/10.1016/j.gloplacha.2014.06.005
Article
Google Scholar
Vicente-Serrano SM, Lopez-Moreno J-I, Beguería S, Lorenzo-Lacruz J, Sanchez-Lorenzo A, García-Ruiz JM, Azorin-Molina C, Morán-Tejeda E, Revuelto J, Trigo R, Coelho F, Espejo F (2014c) Evidence of increasing drought severity caused by temperature rise in southern Europe. Environ Res Lett 9:044001. https://doi.org/10.1088/1748-9326/9/4/044001
Article
Google Scholar
Vicente-Serrano SM, Van der Schrier G, Beguería S et al (2015) Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J Hydrol 526:42–54. https://doi.org/10.1016/j.jhydrol.2014.11.025
Article
Google Scholar
Vicente-Serrano SM, Beguería S, Camarero JJ (2017) Drought severity in a changing climate
Vicente-Serrano SM, Bidegain M, Tomas-Burguera M, Dominguez-Castro F, el Kenawy A, McVicar TR, Azorin-Molina C, López-Moreno JI, Nieto R, Gimeno L, Giménez A (2018a) A comparison of temporal variability of observed and model-based pan evaporation over Uruguay (1973–2014). Int J Climatol:38. https://doi.org/10.1002/joc.5179
Vicente-Serrano SM, Nieto R, Gimeno L, Azorin-Molina C, Drumond A, el Kenawy A, Dominguez-Castro F, Tomas-Burguera M, Peña-Gallardo M (2018b) Recent changes of relative humidity: regional connections with land and ocean processes. Earth Syst Dyn 9:915–937. https://doi.org/10.5194/esd-9-915-2018
Article
Google Scholar
Vicente-Serrano SM, McVicar TR, Miralles DG et al (2020) Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. Wiley Interdiscip Rev Clim Chang 11. https://doi.org/10.1002/wcc.632
Wang K, Dickinson RE, Liang S (2012) Global atmospheric evaporative demand over land from 1973 to 2008. J Clim 25:8353–8361. https://doi.org/10.1175/JCLI-D-11-00492.1
Article
Google Scholar
Wang Z, Xie P, Lai C, Chen X, Wu X, Zeng Z, Li J (2017) Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013. J Hydrol 544:97–108. https://doi.org/10.1016/j.jhydrol.2016.11.021
Article
Google Scholar
Wang J, Xu C, Hu M, Li Q, Yan Z, Jones P (2018) Global land surface air temperature dynamics since 1880. Int J Climatol 38:e466–e474. https://doi.org/10.1002/joc.5384
Article
Google Scholar
Wilhite DA, Pulwarty RS (2017) Drought as Hazard: understanding the natural and social context. In: drought and water crises: integrating science, management, and policy. Pp 3–22
Willett KM, Dunn RJH, Thorne PW, Bell S, de Podesta M, Parker DE, Jones PD, Williams Jr CN (2014) HadISDH land surface multi-variable humidity and temperature record for climate monitoring. Clim Past 10:1983–2006. https://doi.org/10.5194/cp-10-1983-2014
Article
Google Scholar
World Meteorological Organization (2012) Standardized Precipitation Index User Guide (M. Svoboda, M. Hayes and D. Wood). Geneva.
Yue sh, Wang chY (2004) The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 18:201–218
Article
Google Scholar
Zarch MAA, Malekinezhad H, Mobin MH et al (2011) Drought monitoring by reconnaissance drought index (RDI) in Iran. Water Resour Manag 25:3485–3504. https://doi.org/10.1007/s11269-011-9867-1
Article
Google Scholar
Zarei AR, Mahmoudi MR (2017) Evaluation of changes in RDIst index effected by different potential evapotranspiration calculation methods. Water Resour Manag 31:4981–4999. https://doi.org/10.1007/s11269-017-1790-7
Article
Google Scholar
Zarei AR, Moghimi MM, Mahmoudi MR (2016) Analysis of changes in spatial pattern of drought using RDI index in south of Iran. Water Resour Manag 30:3723–3743. https://doi.org/10.1007/s11269-016-1380-0
Article
Google Scholar
Zhang Y, Cai W, Chen Q, Yao Y, Liu K (2015) Analysis of changes in precipitation and drought in Aksu River basin, Northwest China. Adv Meteorol 2015:1–15
Google Scholar
Zhao T, Dai A (2017) Uncertainties in historical changes and future projections of drought. Part II: model-simulated historical and future drought changes. Clim Chang 144:535–548. https://doi.org/10.1007/s10584-016-1742-x
Article
Google Scholar