Assessment of extreme precipitation through climate change indices in Zacatecas, Mexico

Abstract

Climate change and extreme climate events identified worldwide at the local, regional, and global scales have significant impact on ecosystems and on society. In this study, spatial and temporal changes in extreme precipitation events in north-central Mexico were investigated using daily precipitation data from 29 meteorological stations over a period of 54 years (1961–2014). The extreme precipitation events are described using ten of the indices established by the Expert Team on Climate Change Detection and Indices (ETCCDI), which characterize daily precipitation in terms of intensity, accumulation, and duration. The indices were calculated yearly and seasonally. The annual and seasonal trends of the indices were estimated with the Theil-Sen method, and its statistical significance was tested with the Mann-Kendall test (MK). The regional average indices of annual total precipitation from wet days (PRCPTOT), simple daily intensity (SDII), number of heavy precipitation days (R10), number of very heavy precipitation days (R20), and consecutive wet days (CWD) had downward trends, but only the last was statistically significant. The regional average of the indices of maximum 1-day precipitation (RX1day), maximum 5-day precipitation (RX5day), number of very wet days (R95p), number of extremely wet days (R99p), and number of consecutive dry days (CDD) showed upward trends, all statistically non-significant. The annual regional average PRCPTOT has decreased at a rate of − 6.20 mm/decade. The decrease was concentrated mainly in central and southern Zacatecas and is associated mainly with the decrease in autumn and summer precipitation. The annual regional average CDD index had increasing trends; 58.6% were statistically significant and concentrated mainly in central and southern Zacatecas. In terms of the general behavior of the PRCPTOT, RX1day, RX5day, R95p, R99p, CDD, and CWD indices, we observed that the precipitation events are decreasing but are becoming slightly more intense. The results will contribute to a better administration of water resources in the state of Zacatecas, Mexico, under the influence of climate change.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Aguilar E, Peterson TC, Ramírez Obando P, Frutos R, Retana JA, Solera M, Soley J, González García I, Araujo RM, Rosa Santos A, Valle VE, Brunet M, Aguilar L, Álvarez L, Bautista M, Castanón C, Herrera L, Ruano E, Sinay JJ, Sánchez E, Hernández Oviedo GI, Obed F, Salgado JE, Vázquez JL, Baca M, Gutiérrez M, Centella C, Espinosa J, Martínez D, Olmedo B, Ojeda Espinoza CE, Núñez R, Haylock M, Benavides H, Mayorga R (2005) Changes in precipitation and temperature extremes in Central America and Northern South America, 1961–2003. J Geophys Res 110:D23107. https://doi.org/10.1029/2005JD006119

    Article  Google Scholar 

  2. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar KR, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:1–22. D05109. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  3. Amador-Ramírez MD, Acosta-Díaz E, Medina-García G, Gutiérrez-Luna R (2007) An empirical model to predict yield of rainfed dry bean with multi-year data. Rev Fitotec Mex 30:311–319

    Google Scholar 

  4. Arriaga-Ramírez S, Cavazos T (2010) Regional trends of daily precipitation indices in northwest Mexico and southwest United States. J Geophys Res 115:D14111. https://doi.org/10.1029/2009JD013248

    Article  Google Scholar 

  5. Bartolomeu S, Calvalho MJ, Marta-Almeida M, Melo-Goncalves P, Rocha A (2016) Recent trend of extreme precipitation indices in the Iberian Peninsula using observations and WRF model results. Phys Chem Earth 94:10–21. https://doi.org/10.1016/j.pce.2016.06.005

    Article  Google Scholar 

  6. Beharry SL, Clarke RM, Kumarsingh K (2015) Variations in extreme temperature and precipitation for a Caribbean island: Trinidad. Theor Appl Climatol 122:783–797. https://doi.org/10.1007/s00704-014-1330-9

    Article  Google Scholar 

  7. Cao L, Pan S (2014) Changes in precipitation extremes over the “Three-River Headwaters” region, hinterland of the Tibetan Plateau, during 1960-2012. Quat Int 321:105–115. https://doi.org/10.1016/j.quaint.2013.12.041

    Article  Google Scholar 

  8. Chen F, Chen H, Yang Y (2015) Annual and seasonal changes in means and extreme events of precipitation and their connection to elevation over Yunnan Province, China. Quat Int 374:46–61. https://doi.org/10.1016/j.quaint.2015.02.016

    Article  Google Scholar 

  9. Comisión Nacional del Agua (CONAGUA) (2017) Base de datos en el sistema CLIma COMputarizado (CLICOM). Servicio Meteorológico Nacional, Comisión Nacional del Agua. Mexico, Ciudad de Mexico, México

    Google Scholar 

  10. Comisión Nacional del Agua (CONAGUA) (2018) Atlas del agua en México edición 2018. México, Ciudad de México

    Google Scholar 

  11. Croitoru A-E, Chiotoroiu B-C, Todorova V-I, Totica V (2013) Changes in precipitation extremes on the Black Sea Western Coast. Glob Planet Change 102:10–19. https://doi.org/10.1016/j.gloplacha.2013.01.004

    Article  Google Scholar 

  12. Croitoru A-E, Piticar A, Burada DC (2016) Changes in precipitation extremes in Romania. Quat Int 415:325–335. https://doi.org/10.1016/j.quaint.2015.07.028

    Article  Google Scholar 

  13. Dinpashoh Y, Mirabbasi R, Jhajharia D, Zare Abianeh H, Mostafaeipour A (2014) Effect of short-term and long-term persistence on identification of temporal trends. J Hydrol Eng 19:617–625. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000819

    Article  Google Scholar 

  14. dos Santos CAC, Neale CMU, Rao TVR, da Silvaa BB (2011) Trends in indices for extremes in daily temperature and precipitation over Utah USA. Int J Climatol 31:1813–1822. https://doi.org/10.1002/joc.2205

    Article  Google Scholar 

  15. Duhan D, Pandey A (2013) Statistical analysis of long term spatial and temporal trends of precipitation during 1901–2002 at Madhya Pradesh, India. Atmos Res 122:136–149. https://doi.org/10.1016/j.atmosres.2012.10.010

    Article  Google Scholar 

  16. Easterling DR, Kunkel KE, Wehner MF, Sun L (2016) Detection and attribution of climate extremes in the observed record. Weather Clim Extremes 11:17–27. https://doi.org/10.1016/j.wace.2016.01.001

    Article  Google Scholar 

  17. Fonseca D, Calvalho MJ, Marta-Almeida M, Melo-Goncalves P, Rocha A (2016) Recent trends of extreme temperature indices for the Iberian Peninsula. Phys Chem Earth 94:66–76. https://doi.org/10.1016/j.pce.2015.12.005

    Article  Google Scholar 

  18. Gallant AJE, Karoly J (2010) A combined climate extremes index for Australian region. J Climate 23:6153–6165. https://doi.org/10.1175/2010JCLI3791.1

    Article  Google Scholar 

  19. Garcia-Cueto OR, Santillan-Soto N, Lopez-Velazquez E, Reyes-Lopez J, Cruz-Sotelo S, Ojeda-Benitez S (2019) Trends of climate change indices in some Mexican cities from 1980 to 2010. Theor Appl Climatol 137:775–790. https://doi.org/10.1007/s00704-018-2620-4

    Article  Google Scholar 

  20. Gbode IE, Adeyeri OE, Menang KP, Intsiful JDK, Ajayi VO, Omotosho JA, Akinsanola AA (2019) Observed changes in climate extremes in Nigeria. Meteorol Appl 26:642–654. https://doi.org/10.1002/met.1791

    Article  Google Scholar 

  21. Hänsel S, Medeiros DM, Matschullat J, Petta RA, de Mendonça SI (2016) Assessing homogeneity and climate variability of temperature and precipitation series in the capitals of North-Eastern Brazil. Front Earth Sci 4:1–21. https://doi.org/10.3389/feart.2016.00029

    Article  Google Scholar 

  22. Hasanpour Kashani M, Dinpashoh Y (2012) Evaluation of efficiency of different estimation methods for missing climatological data. Stoch Environ Res Risk Assess 26:59–71. https://doi.org/10.1007/s00477-011-0536-y

    Article  Google Scholar 

  23. Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciacao YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G, Corradi V, Garcia VJ, Grimm AM, Karoly D, Marengo JA, Marino MB, Moncunill DF, Nechet D, Quintana J, Rebello E, Rusticucci M, Santos JL, Trebejo I, Vincent LA (2006) Trends in total and extreme South American rainfall in 1960-2000 and link with sea surface temperature. J Clim 19:1490–1512. https://doi.org/10.1175/JCLI3695.1

    Article  Google Scholar 

  24. Instituto Nacional de Estadistica y Geografia (INEGI) (2015) Anuario estadístico y geográfico de Zacatecas 2015. Instituto Nacional de Estadística y Geografía, México

    Google Scholar 

  25. Intergovernmental Panel on Climate Change (IPCC) (2014) Climate Change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland. 151 pp

  26. Jahanbaksh Asl S, Khorshiddoust AM, Dinpashoh Y, Sarafrouzeh F (2013) Frequency analysis of climate extreme events in Zanjan, Iran. Stoch Environ Res Risk Assess 27:1637–1650. https://doi.org/10.1007/s00477-013-0701-6

    Article  Google Scholar 

  27. Jiang C, Mu X, Wang F, Zhao G (2016) Analysis of extreme temperature events in the Qinling Mountains and surrounding area during 1960-2012. Quat Int 392:155–167. https://doi.org/10.1016/j.quaint.2015.04.018

    Article  Google Scholar 

  28. Kendall MG (1975) Rank correlation methods. Griffin, London

    Google Scholar 

  29. Kostopoulou E, Jones PD (2005) Assessment of climate extremes in the Eastern Mediterranean. Meteorol Atmos Phys 89:69–85. https://doi.org/10.1007/s00703-005-0122-2

    Article  Google Scholar 

  30. Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, Muir-Wood R, Brakenridge GR, Kron W, Benito G, Honda Y, Takahashi K, Sherstyukov B (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59:1–28. https://doi.org/10.1080/02626667.2013.857411

    Article  Google Scholar 

  31. Limsakul A, Singhruck P (2016) Long-term trend and variability of total and extreme precipitation in Thailand. Atmos Res 169:301–317. https://doi.org/10.1016/j.atmosres.2015.10.015

    Article  Google Scholar 

  32. Liu B, Chen C, Lian Y, Chen J, Chen X (2015) Long-term change of wet and dry climatic conditions in the southwest karst area of China. Glob Planet Change 127:1–11. https://doi.org/10.1016/j.gloplacha.2015.01.009

    Article  Google Scholar 

  33. Lund R, Reeves J (2002) Detection of undocumented changepoints: a revision of the Two-phase regression model. J Climate 15:2547–2554. https://doi.org/10.1175/1520-0442(2002)015<2547:DOUCAR>2.0.CO;2

    Article  Google Scholar 

  34. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  35. Montero-Martínez MJ, Santana-Sepúlveda JS, Pérez-Ortiz NI, Pita-Díaz O, Castillo-Liñan S (2018) Comparing climate change indices between a northern (arid) and a southern (humid) basin in Mexico during the last decades. Adv Sci Res 15:231–237. https://doi.org/10.5194/asr-15-231-2018

    Article  Google Scholar 

  36. Nkemelang T, New M, Zaroug M (2018) Temperature and precipitation extremes under current, 1.5 °C and 2.0 °C global warming above pre-industrial levels over Botswana, and implications for climate change vulnerability. Environ Res Lett 13:1–11. https://doi.org/10.1088/1748-9326/aac2f8

    Article  Google Scholar 

  37. Ortiz-Gómez R, Cardona-Díaz JC, Ortiz-Robles FA, Alvarado-Medellin P (2018) Characterization of droughts by comparing three multiscale indices in Zacatecas, Mexico. Tecnol Cienc Agua 9(3):47–91. https://doi.org/10.24850/j-tyca-2018-03-03

    Article  Google Scholar 

  38. Powell EJ, Keim BD (2015) Trends in daily temperature and precipitation extremes for the southeastern United States: 1948–2012. J Climate 28:1592–16112. https://doi.org/10.1175/JCLI-D-14-00410.1

    Article  Google Scholar 

  39. Rahmani V, Harrington JJ (2019) Assessment of climate change for extreme precipitation indices: a case study from the central United States. Int J Climatol 39:1013–1025. https://doi.org/10.1002/joc.5858

    Article  Google Scholar 

  40. Ruiz-Alvarez O, Singh VP, Enciso-Medina J, Ontiveros-Capurata RE, dos Santos CAC (2019) Observed trends in daily extreme precipitation indices in Aguascalientes, Mexico. Meteorol Appl 27:e1838. https://doi.org/10.1002/met.1838

    Article  Google Scholar 

  41. Santos M, Fragoso M (2013) Precipitation variability in Northern Portugal: data homogeneity assessment and trend in extreme precipitation indices. Atmos Res 131:34–45. https://doi.org/10.1016/j.atmosres.2013.04.008

    Article  Google Scholar 

  42. Sen PK (1968) Estimates of the regression coefficients based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.2307/2285891

    Article  Google Scholar 

  43. Skansi MM, Brunet M, Sigró J, Aguilar E, Arevalo JA, Bentancur OJ, Castellón YR, Correa RL, Jácome H, Malheiros A, Oria C, Pasten AM, Mitro SS, Villaroel C, Martínez R, Alexander LV, Jones PD (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  44. Some'e BS, Ezani A, Tabari H (2012) Spatiotemporal trends and change point of precipitation in Iran. Atmos Res 113:1–12. https://doi.org/10.1016/j.atmosres.2012.04.016

    Article  Google Scholar 

  45. Song X, Song S, Sun W, Mu X, Wang S, Li J, Li Y (2015) Recent changes in extreme precipitation and drought over the Songhua River Basin, China, during 1960-2013. Atmos Res 157:137–152. https://doi.org/10.1016/j.atmosres.2015.01.022

    Article  Google Scholar 

  46. Subash N, Singh SS, Priya N (2011) Extreme rainfall indices and its impacts on rice productivity- a case study over sub-humid climatic environment. Agri Water Manag 98:1373–1387. https://doi.org/10.1016/j.agwat.2011.04.003

    Article  Google Scholar 

  47. Subba S, Ma Y, Ma W (2019) Spatial and temporal analysis of precipitation extremities of Eastern Nepal in the last two decades (1997–2016). J Geophys Res 124:7523–7539. https://doi.org/10.1029/2019JD030639

    Article  Google Scholar 

  48. Sun W, Mu X, Song X, Wu D, Cheng A, Qiu B (2015) Changes in extreme temperature and precipitation events in the Loess Plateau (China) during 1960-2013 under global warming. Atmos Res 168:33–48. https://doi.org/10.1016/j.atmosres.2015.09.001

    Article  Google Scholar 

  49. Theil H (1950) A rank invariant method of linear and polynomial regression analysis, Part 3. Netherlands Akademie van Wettenschappen, Proceedings 53:1397–1412

    Google Scholar 

  50. United Nation (UN) (2014) Mexico’s agricultural development: perspectives and outlook, New York

  51. Villafuerte MQ II, Matsumoto J, Alasaka I, Takahashi HG, Kubota H, Cinco TA (2014) Long-term trends and variability of rainfall extremes in the Philippines. Atmos Res 137:1–13. https://doi.org/10.1016/j.atmosres.2013.09.021

    Article  Google Scholar 

  52. Von Storch H, Navarra A (1999) Analysis of climate variability: applications of statistical techniques. Springer-Verlag, Berlin

    Google Scholar 

  53. Wang XL (2008) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25(3):368–384. https://doi.org/10.1175/2007JTECHA982.1

    Article  Google Scholar 

  54. Wang XL, Wen QH, Wu Y (2007) Penalized Maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46(6):916–931. https://doi.org/10.1175/JAM2504.1

    Article  Google Scholar 

  55. Wang B, Zhang M, Wei J, Wang S, Li X, Li S, Zhao A, Li X, Fan J (2013a) Changes in extreme precipitation over Northeast China, 1960–2011. Quat Int 298:177–186. https://doi.org/10.1016/j.quaint.2013.01.025

    Article  Google Scholar 

  56. Wang S, Zhang M, Sun M, Wang B, Li X (2013b) Changes in precipitation extremes in alpine areas of the Chinese Tianshan Mountains, central Asia, 1961-2011. Quat Int 311:97–107. https://doi.org/10.1016/j.quaint.2013.07.008

    Article  Google Scholar 

  57. Wang Y, Xu Y, Lei C, Li G, Han L, Song S, Yang L, Deng X (2016) Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960-2012. Atmos Res 172-173:196–205. https://doi.org/10.1016/j.atmosres.2016.01.008

    Article  Google Scholar 

  58. Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829. https://doi.org/10.1002/hyp.1095

    Article  Google Scholar 

  59. Zhang Q, Liu C, Xu C-Y, Xu Y, Jiang T (2006) Observed trends of annual maximum water level and streamflow during past 130 years in the Yangtze River basin, China. J Hydrol 324(1-4):255–265. https://doi.org/10.1016/j.jhydrol.2005.09.023

    Article  Google Scholar 

  60. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2(6):851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  61. Zhang J, Shen X, Wang B (2015) Changes in precipitation extremes in Southeastern Tibet, China. Quat Int 380-381:49–59. https://doi.org/10.1016/j.quaint.2015.02.009

    Article  Google Scholar 

  62. Zhao Y, Zou X, Cao L, Xu X (2014) Changes in precipitation extremes over the Pearl River Basin, southern China, during 1960-2012. Quat Int 333:26–39. https://doi.org/10.1016/j.quaint.2014.03.060

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the National Meteorological Service of the National Water Commission (SMN-CONAGUA) of Mexico for providing the daily rainfall data for this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ruperto Ortiz-Gómez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Gómez, R., Muro-Hernández, L.J. & Flowers-Cano, R.S. Assessment of extreme precipitation through climate change indices in Zacatecas, Mexico. Theor Appl Climatol (2020). https://doi.org/10.1007/s00704-020-03293-2

Download citation