Skip to main content

Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015

Abstract

Changes in frozen soil caused by global warming are widely expected to have significant effects on ecosystems in cold regions, and the response of the start of the vegetation growing season (SOS) to climate change on the Qinghai-Tibetan Plateau (QTP) has drawn great attention. In this study, we investigated the changes in the freezing/thawing processes and their relationship with the SOS from 2003 to 2015 in the source region of the Yellow River (SRYR) on the northeastern QTP. The results indicate that the soil thaw onset (STO) at a depth of 5 cm advanced significantly in most regions at a rate ranging from 0.09 to 1.47 day · year−1, and the maximum frozen depth decreased in most regions at a rate of 0.007 to 0.031 m · year−1, despite a nonsignificant increase in the spring air temperature. The SOS derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) data advanced in the regions covered by alpine meadow. The logistic method was shown to be better than the polynomial method in retrieving the SOS using remote sensing indexes. The gray relational analysis suggested that the advance in the STO was the major factor leading to the advance in the SOS of alpine meadow regions. Changes in the LAI during the initial period of the growing season were likely to be primarily influenced by the maximum frozen depth and soil temperature. Furthermore, the substantial effect of frozen soil changes on the SOS in the SRYR necessitates the importance of analyzing frozen soil processes to predict the response of spring vegetation phenology to climate change on the QTP.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Cable JM, Ogle K, Bolton WR, Bentley LP, Romanovsky V, Iwata H, Harazono Y, Welker J (2014) Permafrost thaw affects boreal deciduous plant transpiration through increased soil water, deeper thaw, and warmer soils. Ecohydrology. 7:982–997. https://doi.org/10.1002/eco.1423

    Article  Google Scholar 

  • Cheng G, Jin H (2013) Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeol J 21:5–23

    Article  Google Scholar 

  • Cuo L, Zhang Y, Bohn TJ, Zhao L, Li J, Liu Q, Zhou B (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res Atmos 120:8276–8298. https://doi.org/10.1002/2015JD023193

    Article  Google Scholar 

  • Deng JL (1982) The control problems of Grey system. Syst Control Lett 5:288–294. https://doi.org/10.1016/S0167-6911(82)80025-X

    Article  Google Scholar 

  • Gao B, Yang D, Qin Y, Wang Y, Li H, Zhang Y, Zhang T (2018) Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau. Cryosphere 12:657–673. https://doi.org/10.5194/tc-12-657-2018

    Article  Google Scholar 

  • Guo D, Wang H (2013) Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981–2010. J Geophys Res Atmos 118:5216–5230

    Article  Google Scholar 

  • Hayashi, Masaki (2013) The cold vadose zone: hydrological and ecological significance of frozen-soil processes. Vadose Zone J 12(4). https://doi.org/10.2136/vzj2013.03.0064

  • Hinzman LD, Bettez ND, Bolton WR, Chapin FS, Dyurgerov MB, Fastie CL, Griffith B, Hollister RD, Hope A, Huntington HP, Jensen AM, Jia GJ, Jorgenson T, Kane DL, Klein DR, Kofinas G, Lynch AH, Lloyd AH, McGuire AD, Nelson FE, Oechel WC, Osterkamp TE, Racine CH, Romanovsky VE, Stone RS, Stow DA, Sturm M, Tweedie CE, Vourlitis GL, Walker MD, Walker DA, Webber PJ, Welker JM, Winker KS, Yoshikawa K (2005) Evidence and implications of recent climate change in northern Alaska and other arctic regions. Clim Chang 72(3):251–298

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data, Version 4; International Centre for Tropical Agriculture (CIAT). http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp. Accessed 12 September 2018

  • Jiang C, Zhang L (2016) Effect of ecological restoration and climate change on ecosystems: a case study in the Three-Rivers Headwater Region, China. Environ Monit Assess 188(6):382

    Article  Google Scholar 

  • Jiang H, Zhang W, Yi Y, Yang K, Li G, Wang G (2018) The impacts of soil freeze/thaw dynamics on soil water transfer and spring phenology in the Tibetan Plateau. Arct Antarct Alp Res 50(1):e1439155

    Article  Google Scholar 

  • Julien Y, Sobrino JA (2009) Global land surface phenology trends from GIMMS database. Int J Remote Sens 30(13):3495–3513

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Myers-Smith I, Forbes BC, Wilmking M, Hallinger M, Lantz T, Blok D et al (2011) Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ Res Lett 6(4):45509–45523(15)

    Article  Google Scholar 

  • Myneni R, Knyazikhin Y, Park T (2017) MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MODIS/MCD15A2H.006. Accessed 2 July 2018

  • Natali SM, Schuur EAG, Rubin RL (2012) Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J Ecol 100(2):488–498

    Article  Google Scholar 

  • Penuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324(5929):887–888

    Article  Google Scholar 

  • Piao S, Fang JY, Zhou LM, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Glob Chang Biol 12(4):672–685

    Article  Google Scholar 

  • Qin Y, Lei H, Yang D, Gao B, Wang Y, Cong Z, Fan W (2016) Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. J Hydrol 542:204–221

    Article  Google Scholar 

  • Qin Y, Yang D, Gao B et al (2017) Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Sci Total Environ 605:830–841

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Shen M, Tang Y, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agric For Meteorol 151:1711–1722

    Article  Google Scholar 

  • Shen M, Zhang G, Cong N, Wang S, Kong W, Piao S (2014) Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai–Tibetan plateau. Agric For Meteorol 189-190:71–80

    Article  Google Scholar 

  • Shen M, Piao S, Dorji T, Liu Q, Cong N, Chen X et al (2015) Plant phenological responses to climate change on the tibetan plateau: research status and challenges. Natl Sci Rev nwv058

  • Wang G, Li Y, Wu Q, Wang Y (2006) Impacts of permafrost changes on alpine ecosystem in Qinghai-Tibet Plateau. Sci China Ser D Earth Sci 49(11):1156–1169

    Article  Google Scholar 

  • Wang G, Wang Y, Li Y, Cheng H (2007) Influences of alpine ecosystem responses to climatic change on soil properties on the Qinghai–Tibet Plateau, China. CATENA 70(3):506–514

    Article  Google Scholar 

  • Wang YF, Shen YJ, Chen YN, Guo Y (2013) Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China. Ecohydrology 6(6):927–936

    Article  Google Scholar 

  • Wang Q, Zhang T, Peng X, Cao B, Wu Q (2015) Changes of soil thermal regimes in the Heihe River Basin over Western China. Arct Antarct Alp Res 47(2):231–241. https://doi.org/10.1657/AAAR00C-14-012

    Article  Google Scholar 

  • Wang X, Xiao J, Li X, Cheng G, Ma M, Che T, Dai L, Wang S, Wu J (2017) No consistent evidence for advancing or delaying trends in spring phenology on the Tibetan Plateau. J Geophys Res-Biogeos 122:3288–3305

    Article  Google Scholar 

  • Wang T, Yang D, Qin Y, Wang Y, Chen Y, Gao B, Yang H (2018) Historical and future changes of frozen ground in the upper yellow river basin. Glob Planet Chang 162:199–211

    Article  Google Scholar 

  • Wang Q, Yang Q, Guo H, Xiao X, Jin H, Li L, Zhang T, Wu Q (2019) Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau. Theor Appl Climatol 136:929–941

    Article  Google Scholar 

  • Wrona FJ, Johansson M, Culp JM, Jenkins A, Mård J, Myers-Smith IH, Prowse TD, Vincent WF, Wookey PA (2016) Transitions in Arctic ecosystems: ecological implications of a changing hydrological regime. J Geophys Res-Biogeos 121:650–674. https://doi.org/10.1002/2015JG003133

    Article  Google Scholar 

  • Wu Q, Zhang T, Liu Y (2010) Permafrost temperatures and thickness on the Qinghai-Tibet Plateau. Glob Planet Chang 72:32–38. https://doi.org/10.1016/j.gloplacha.2010.03.001

    Article  Google Scholar 

  • Yang M, Nelson FE, Shiklomanov NI, Guo D, Wan G (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth Sci Rev 103:31–44. https://doi.org/10.1016/j.earscirev.2010.07.002

    Article  Google Scholar 

  • Yue S, Pilon P, Phinney B, Cavadias G (2002) The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol Process 16:1807–1829

    Article  Google Scholar 

  • Zhang X (2007) Vegetation Map of the People's Republic of China (1:1,000,000). China Geological Publishing House, Beijing, China (In Chinese)

    Google Scholar 

  • Zhang X, Friedl MA, Schaaf CB, Strahler AH, Hodges JCF, Gao F, Reed BC, Huete A (2003) Monitoring vegetation phenology using MODIS. Remote Sens Environ 84(3):471–475

    Article  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. PNAS 110(11):4309–4314

    Article  Google Scholar 

  • Zhang WJ, Yi YH, Kimball JS, Kim Y, Song KC (2015) Climatic controls on spring onset of the Tibetan Plateau Grasslands from 1982 to 2008. Remote Sens 7(12):16,607–16,622

    Article  Google Scholar 

  • Zhang W, Yi Y, Song K, Kimball J, Lu Q (2016) Hydrological response of alpine wetlands to climate warming in the eastern Tibetan Plateau. Remote Sens 8(4):336

    Article  Google Scholar 

  • Zhao L, Ping C-L, Yang D, Cheng G, Ding Y, Liu S (2004) Changes of climate and seasonally frozen ground over the past 30 years in Qinghai–Xizang (Tibetan) Plateau, China. Glob Planet Chang 43:19–31

    Article  Google Scholar 

  • Zhou J, Cai W, Qin Y, Lai L, Guan T, Zhang X, Jiang L, Du H, Yang D, Cong Z, Zheng Y (2016) Alpine vegetation phenology dynamic over 16 years and its covariation with climate in a semi-arid region of china. Sci Total Environ 572:119–128

    Article  Google Scholar 

  • Zhu Z, Bi J, Pan Y, Ganguly S, Anav A, Xu L, Samanta A, Piao S, Nemani R, Myneni R (2013) Global data sets of vegetation leaf area index (LAI)3g and fraction of Photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote Sens 5(2):927

    Article  Google Scholar 

  • Zou D, Lin Z, Yu S et al (2017) A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 11:2527–2542

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (project no. 41630856) and the demonstrative transportation research and development program using GF high-resolution aerial imagery, P.R. China (project no. 07-Y30B03-9001-19/21). The authors would like to thank the editor and reviewers for their constructive suggestions to improve the quality of the paper. The observed meteorological data and frozen depth data are provided by the China Meteorological Administration (website http://data.cma.cn). The MODIS LAI data is provided by the Land Processes Distributed Active Archive Center (website http://lpdaac.usgs.gov/). The LPDR_v2 soil moisture data is provided by the University of Montana (website http://files.ntsg.umt.edu/data/LPDR_v2/GeoTIFF). The DEM data is provided by the International Centre for Tropical Agriculture (website http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 280 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gao, B., Li, J. & Wang, X. Impact of frozen soil changes on vegetation phenology in the source region of the Yellow River from 2003 to 2015. Theor Appl Climatol 141, 1219–1234 (2020). https://doi.org/10.1007/s00704-020-03266-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-020-03266-5

Keywords

  • Frozen soil
  • Spring phenology
  • Source region of the Yellow River
  • Freezing/thawing processes
  • Soil temperature