Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region

Abstract

Since the dawn of civilization, the Western Mediterranean region has been a unique path for encounters and exchanges. The stability of the general conditions prevailing in its surrounding was crucial to ensure this vital link between north and south and east and west. However, any imbalance would be the precursor of a harmful domino effect to these environments, where the natural vulnerabilities are combined to a worsening socioeconomic congestion. In both banks, efforts are made not to give way to the fragile balance of water availability and risks. Here, we show that the amount and recurrence of extreme rainfall events contradict with current management scenarios. Our pixel-based assessment of the rain components extracted from the African Rainfall Climatology product reveals an annual increase in the total amount of rainfall and extreme rainfall events. A spatial and a trend analysis of the studied rainfall components were carried out to determine their spatial patterns and magnitude. The cumulative annual rainfall alone will not mean if a year is dry or wet. A wet year can experience great periods of drought, which will have serious repercussions on the socioeconomic and ecological levels. In addition, the increased occurrence of extreme rains can produce floods, intensifying land degradation processes, loss of biodiversity, water availability and economic growth. Decision-makers should be aware that current models of territorial management will not be able to cope with this change and that interdisciplinary cohesion and cross-border actions are the most appropriate solution.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data availability

ARC2 dataset is freely available in https://iridl.ldeo.columbia.edu/ and the EMDAT international disaster database is available in http://www.emdat.be/.

References

  1. Adjei KA, Ren L, Appiah-Adjei EK, Odai SN (2014) Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrol Res 46:777–791. https://doi.org/10.2166/nh.2014.111

    Article  Google Scholar 

  2. AghaKouchak A, Farahmand A, Melton FS, Teixeira J, Anderson MC, Wardlow BD, Hain CR (2015) Remote sensing of drought: Progress, challenges and opportunities. Rev Geophys 53:2014RG000456. https://doi.org/10.1002/2014RG000456

    Article  Google Scholar 

  3. Alvarez MS, Vera CS, Kiladis GN, Liebmann B (2016) Influence of the Madden Julian Oscillation on precipitation and surface air temperature in South America. Clim Dyn 46:245–262. https://doi.org/10.1007/s00382-015-2581-6

    Article  Google Scholar 

  4. Asadullah A, McIntyre N, Kigobe MAX (2008) Evaluation of five satellite products for estimation of rainfall over Uganda / Evaluation de cinq produits satellitaires pour l'estimation des précipitations en Ouganda. Hydrol Sci J 53:1137–1150. https://doi.org/10.1623/hysj.53.6.1137

    Article  Google Scholar 

  5. Belmonte AC, Beltran FS (2001) Flood events in Mediterranean ephemeral streams (ramblas) in Valencia region, Spain. Catena:229–249

  6. Benabdelouahab T, Lebrini Y, Boudhar A, Hadria R, Htitiou A, Lionboui H (2019) Monitoring spatial variability and trends of wheat grain yield over the main cereal regions in Morocco: a remote-based tool for planning and adjusting policies. Geocarto Int:1, 20. https://doi.org/10.1080/10106049.2019.1695960

  7. Benhamrouche A, Martin-Vide J (2017) Évolutions de la concentration des précipitations journalières sur les littoraux du bassin méditerranéen occidental (1951–2010). Physio-Géo:107–127

  8. Benhamrouche A, Boucherf D, Hamadache R, Bendahmane L, Martín Vide J, Teixeira Nery J (2015) Spatial distribution of the daily precipitation concentration index in Algeria. Nat Hazards Earth Syst Sci 15(3):617–625

    Article  Google Scholar 

  9. Boudhar A et al (2020) Hydrological response to snow cover changes using remote sensing over the Oum Er Rbia Upstream Basin, Morocco. In: Mapping and spatial analysis of socio-economic and environmental indicators for sustainable development. Springer, Berlin, pp 95–102

    Google Scholar 

  10. Da Silva RM, Santos CA, Moreira M, Corte-Real J, Silva VC, Medeiros IC (2015) Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat Hazards 77:1205–1221

    Article  Google Scholar 

  11. Diem JE, Hartter J, Ryan SJ, Palace MW (2014) Validation of Satellite Rainfall Products for Western Uganda. J Hydrometeorol 15:2030–2038. https://doi.org/10.1175/jhm-d-13-0193.1

    Article  Google Scholar 

  12. Dinku T, Ceccato P, Grover-Kopec E, Lemma M, Connor SJ, Ropelewski CF (2007) Validation of satellite rainfall products over East Africa's complex topography. Int J Remote Sens 28:1503–1526. https://doi.org/10.1080/01431160600954688

    Article  Google Scholar 

  13. Dinku T, Funk C, Peterson P, Maidment R, Tadesse T, Gadain H, Ceccato P (2018) Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q J R Meteorol Soc 144:292–312. https://doi.org/10.1002/qj.3244

    Article  Google Scholar 

  14. Domínguez-Castro F et al (2018) Mapping seasonal and annual extreme precipitation over the Peruvian Andes. Int J Climatol 38:5459–5475. https://doi.org/10.1002/joc.5739

    Article  Google Scholar 

  15. Driouech F (2010) Distribution des précipitations hivernales sur le Maroc dans le cadre d'un changement climatique: descente d'échelle et incertitudes. INPT

  16. Filahi S, Tanarhte M, Mouhir L, El Morhit M, Tramblay Y (2016) Trends in indices of daily temperature and precipitations extremes in Morocco. Theor Appl Climatol 124:959–972

    Article  Google Scholar 

  17. Gadouali F, Messouli M (2020) Evaluation of multiple satellite-derived rainfall products over Morocco. Int J Hydrol Sci Technol 10:72–89. https://doi.org/10.1504/IJHST.2020.104988

    Article  Google Scholar 

  18. Gaume E, Bouvier C (2004) Analyse hydro-pluviométrique des crues du Gard et du Vidourle des 8 et 9 septembre 2002 La Houille Blanche, pp 99–106

  19. Gaume E, Borga M, Llassat MC, Maouche S, Lang M, Diakakis M (2016) Mediterranean extreme floods and flash floods

  20. Getirana ACV (2010) Integrating spatial altimetry data into the automatic calibration of hydrological models. J Hydrol 387:244–255. https://doi.org/10.1016/j.jhydrol.2010.04.013

    Article  Google Scholar 

  21. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob Planet Chang 100:172–182

    Article  Google Scholar 

  22. Goubanova K, Li L (2007) Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob Planet Chang 57:27–42

    Article  Google Scholar 

  23. Guhathakurta P, Sreejith OP, Menon PA (2011) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120:359. https://doi.org/10.1007/s12040-011-0082-5

    Article  Google Scholar 

  24. Hadria R, Benabdelouahab T, Mahyou H, Balaghi R, Bydekerke L, El Hairech T, Ceccato P (2018) Relationships between the three components of air temperature and remotely sensed land surface temperature of agricultural areas in Morocco. Int J Remote Sens 39:356–373. https://doi.org/10.1080/01431161.2017.1385108

    Article  Google Scholar 

  25. Hadria R et al (2019) Combining use of TRMM and ground observations of annual precipitations for meteorological drought trends monitoring in Morocco. Am J Remote Sens 7:25–34. https://doi.org/10.11648/j.ajrs.20190702.11

    Article  Google Scholar 

  26. Hipel KW, McLeod AI (1994) Time series modelling of water resources and environmental systems. Elsevier

  27. Kendall M (1975) Rank correlation methods, Charles griffin, London (1975) Google Scholar

  28. Khomsi K, Mahe G, Tramblay Y, Sinan M, Snoussi M (2015) Trends in rainfall and temperature extremes in Morocco. Nat Hazards Earth Syst Sci Discuss 3

  29. Kyselý J, Beguería S, Beranová R, Gaál L, López-Moreno JI (2012) Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Glob Planet Chang 98:63–72

    Article  Google Scholar 

  30. Lionboui H, Benabdelouahab T, Hasib A, Elame F, Boulli A (2018a) Dynamic agro-economic modeling for sustainable water resources management in arid and semi-arid areas. In: Hussain CM (ed) Handbook of environmental materials management. Springer International Publishing, Cham, pp 1–26. https://doi.org/10.1007/978-3-319-58538-3_114-1

    Google Scholar 

  31. Lionboui H, Benabdelouahab T, Hasib A, Elame F, Boulli A, Hussain CM (2018b) Handbook of environmental materials management vol null.

  32. Llasat MC et al (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55

    Article  Google Scholar 

  33. Mann HB (1945) Nonparametric tests against trend Econometrica. J Econ Soc:245–259

  34. Martinez- Casasnovas JA, Ramos MC, Ribes-Dasi M (2002) Soil erosion caused by extreme rainfall events: mapping and quantification in agricultural plots from very detailed digital elevation models. Geoderma 105:125–140. https://doi.org/10.1016/S0016-7061(01)00096-9

    Article  Google Scholar 

  35. Martin-Vide J (2004) Spatial distribution of a daily precipitation concentration index in peninsular Spain. Int J Climatol 24:959–971

    Article  Google Scholar 

  36. Martin-Vide J, Lopez-Bustins JA (2006) The western Mediterranean oscillation and rainfall in the Iberian Peninsula. Int J Climatol 26:1455–1475

    Article  Google Scholar 

  37. Mathbout S, Lopez-Bustins JA, Royé D, Martin-Vide J, Benhamrouche A (2019) Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int J Climatol

  38. Mathbout S, Lopez-Bustins JA, Royé D, Martin-Vide J, Benhamrouche A (2020) Spatiotemporal variability of daily precipitation concentration and its relationship to teleconnection patterns over the Mediterranean during 1975–2015. Int J Climatol:40, 1435–1455

  39. Michiels P, Gabriels D, Hartmann R (1992) Using the seasonal and temporal Precipitation concentration index for characterizing the monthly rainfall distribution in Spain. Catena 19:43–58. https://doi.org/10.1016/0341-8162(92)90016-5

    Article  Google Scholar 

  40. Mirza MMQ (2003) Climate change and extreme weather events: can developing countries adapt? Clim Pol 3:233–248

    Article  Google Scholar 

  41. Monjo R, Martin-Vide J (2016) Daily precipitation concentration around the world according to several indices. Int J Climatol 36:3828–3838

    Article  Google Scholar 

  42. Novella NS, Thiaw WM (2013) African rainfall climatology version 2 for famine early warning systems. J Appl Meteorol Climatol 52:588–606. https://doi.org/10.1175/jamc-d-11-0238.1

    Article  Google Scholar 

  43. Oualkacha L, Stour L, Agoumi A, Kettab A (2017) Climate change impacts in the Maghreb region: status and prospects of the water resources. In: Water and Land Security in Drylands. Springer, Berlin, pp 17–25

    Google Scholar 

  44. Ouatiki H et al. (2017) Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. climate 5:1

  45. Ouatiki H, Boudhar A, Ouhinou A, Arioua A, Hssaisoune M, Bouamri H, Benabdelouahab T (2019) Trend analysis of rainfall and drought over the Oum Er-Rbia River basin in Morocco during 1970–2010 Arabian. J Geosci 12:128. https://doi.org/10.1007/s12517-019-4300-9

    Article  Google Scholar 

  46. Ouyang Q, Lu W, Xin X, Zhang Y, Cheng W, Yu T (2016) Monthly rainfall forecasting using EEMD-SVR based on phase-space reconstruction. Water Resour Manag 30:2311–2325

    Article  Google Scholar 

  47. Pachauri RK et al (2014) Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva

    Google Scholar 

  48. Quintana-Seguí P, Habets F, Martin E (2011) Comparison of past and future Mediterranean high and low extremes of precipitation and river flow projected using different statistical downscaling methods. Nat Hazards Earth Syst Sci 11:1411

    Article  Google Scholar 

  49. Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur J Agron 13:125–153

    Article  Google Scholar 

  50. Salhi A, Benabdelouahab S (2017) Etude hydrogéologique de la nappe alluviale de Ghis-Nekor (Maroc). Noor Publishing, Alemagne

    Google Scholar 

  51. Salhi A, Martin-Vide J, Benhamrouche A, Benabdelouahab S, Himi M, Benabdelouahab T, Casas Ponsati A (2019) Rainfall distribution and trends of the daily precipitation concentration index in northern Morocco: a need for an adaptive environmental policy SN. Appl Sci 1:277. https://doi.org/10.1007/s42452-019-0290-1

    Article  Google Scholar 

  52. Salhi A, Benabdelouahab T, Martin-Vide J, Okacha A, el Hasnaoui Y, el Mousaoui M, el Morabit A, Himi M, Benabdelouahab S, Lebrini Y, Boudhar A, Casas PA (2020) Bridging the gap of perception is the only way to align soil protection actions. Sci Total Environ 718:137421. https://doi.org/10.1016/j.scitotenv.2020.137421

    Article  Google Scholar 

  53. Sen PK (1968) Estimates of the regression coefficient based on Kendall's tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  54. Serrano-Notivoli R et al (2018) Spatio-temporal variability of daily precipitation concentration in Spain based on a high-resolution gridded data set. Int J Climatol 38:e518–e530

    Article  Google Scholar 

  55. Sowers J, Vengosh A, Weinthal E (2011) Climate change, water resources, and the politics of adaptation in the Middle East and North Africa. Clim Chang 104:599–627

    Article  Google Scholar 

  56. Stour L, Agoumi A (2008) Sécheresse climatique au Maroc durant les dernières décennies. Hydroécologie Appliquée 16:215–232

    Article  Google Scholar 

  57. Strohmeier S et al (2019) Surface runoff and drought assessment using global water resources datasets-from oum er rbia basin to the moroccan country scale. Water Resour Manag:1–17

  58. UNISDR C (2015) The human cost of natural disasters: A global perspective

  59. Yao Y, Liu J, Wang Z, Wei X, Zhu H, Fu W, Shao M (2020) Responses of soil aggregate stability, erodibility and nutrient enrichment to simulated extreme heavy rainfall. Sci Total Environ 709:136150. https://doi.org/10.1016/j.scitotenv.2019.136150

    Article  Google Scholar 

  60. Yue S, Pilon P, Cavadias G (2002) Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. J Hydrol 259:254–271

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Lionboui Hayat, Abdelaziz Htitiou and Noury Hassan for their support and advice.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tarik Benabdelouahab.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Benabdelouahab, T., Gadouali, F., Boudhar, A. et al. Analysis and trends of rainfall amounts and extreme events in the Western Mediterranean region. Theor Appl Climatol 141, 309–320 (2020). https://doi.org/10.1007/s00704-020-03205-4

Download citation