Effect of low-level flow and Andes mountain on the tropical and mid-latitude precipitating cloud systems: GPM observations

Abstract

The effect of different directional South American low-level flow (SA-LLF) and topography on the near surface rainfall characteristics are validated in the present study. The near surface precipitation characteristics of the precipitating cloud systems (PCSs) are investigated under the influence of low-level flow (LLF) at 850 hPa and topography. Global precipitation measurement dual precipitation radar (GPM-DPR) data is used to define the PCSs. The PCSs consist of valuable information, including radar reflectivity (Ze), rain rate (RR), storm top height (STH), and DSD (drop size (Dm) and drop concentration (Nw) parameters). For LLF, we considered wind data at 850 hPa and for each PCS, the average wind angle is calculated using U and V component of wind component from European Center for Medium-Range Weather Forecast Interim data. Based on the direction of the topography, the LLF is divided into upslope, downslope, easterly and westerly LLF. The transported moisture from the Amazon to east of the Andes and strength of LLF decides the precipitation characteristics over tropical and mid-latitude PCSs. The zonal variation over the SA continent shows that the easterly and northerly LLF consist of higher fraction of PCSs with largest area (> 2000 km2). The RR and Dm are higher at the eastern flank of SA Andes, and higher RR is observed in northerly and easterly LLF and shows the role of the moisture convergence near the eastern flank of Andes. However, the differences in the near surface rainfall parameters are higher when the LLF direction is considered along the perpendicular direction of the topography. The analysis reveals that mountain and directional LLF can alter the precipitation characteristics, and mostly, the eastern flank of Andes has higher RR and Dm compared to western flank of the Andes, and highest for the orographically moisture loaded upslope and easterly LLF in tropical PCSs. Tropical PCS has higher probability of bright band and warm rain compared to mid-tropical latitude PCSs and even higher in upslope and easterly LLF. The variation in DSD parameters with RR and STH revealed the role of the LLF and complex orography in the microphysical evolution of the precipitation and suggested that it is much required to investigate them in the numerical models.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Altinger de Shwarzkopf ML, Rosso LC (1982) Severe storms and tornadoes in Argentina. Preprints. In: 12th Conf. On Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc, 59–62

  2. Anabor V, Stensrud DJ, De Moraes OL (2008) Serial upstream-propagating mesoscale convective system events over southeastern South America. Mon Weather Rev 136:3087–3105

    Google Scholar 

  3. Barret BS, Garreaud RD, Falvey M (2009) Effect of the Andes cordillera on precipitation from a mid latitude cold front. Mon Weather Rev 137:3092–3109

    Google Scholar 

  4. Bendix J, Trachte K, Cermak J, Rollenbeck R, Nauß T (2009) Formation of convective clouds at the foothills of the tropical eastern Andes (South Ecuador). J Appl Meteorol Climatol 48(8):1682–1695. https://doi.org/10.1175/2009JAMC2078.1

    Article  Google Scholar 

  5. Berri GJ, Inzunza BJ (1993) The effect of the low-level jet on the poleward water vapour transport in the central region of South America. Atmos Environ 27A:335–341. https://doi.org/10.1016/0960-1686(93)90107-A

    Article  Google Scholar 

  6. Bhat GS, Kumar S (2015) Vertical structure of cumulonimbus towers and intense convective clouds over the south Asian region during the summer monsoon season. J Geophys Res Atmos 120(5):1710–1722. https://doi.org/10.1002/2014JD022552

    Article  Google Scholar 

  7. Bhatt BC, Nakamura K (2005) Characteristics of monsoon rainfall around the Himalayas revealed by TRMM precipitation radar. Mon Weather Rev 133(1):149–165

    Google Scholar 

  8. Bonner WD (1968) Climatology of the low level jet. Mon Wea Rev 96:833–850. https://doi.org/10.1175/1520-0493(1968)096,0833:COTLLJ.2.0.CO;2

  9. Bousquet O, Smull BF (2003) Observations and impacts of upstream blocking during a widespread orographic precipitation event. Q J R Meteorol Soc 129(588):391–409

    Google Scholar 

  10. Cetrone J, Houze RA (2009) Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quart J Royal Meteorol Soc J Atmos Sci 135(639):305–317

    Google Scholar 

  11. Chen YL, Fu YF (2017) Characteristics of VIRS signals within pixels of TRMM PR for warm rain in the tropics and subtropics. J Appl Meteorol Climatol 56:789–801

    Google Scholar 

  12. Colle BA (2004) Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: an idealized modeling perspective. J Atmos Sci

  13. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matri-cardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA- interim reanalysis: con guration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Google Scholar 

  14. Dixon M, Wiener G (1993) TITAN: Thunderstorm identi cation, tracking, analysis, and nowcasting a radar-based methodology. J Atmos Oceanic Technol 10:785–797

    Google Scholar 

  15. Douglas MW, Valdez-Manzanilla A, Garcia Cueto R (1998) Diurnal variation and horizontal extent of the low-level jet over the northern Gulf of California. Mon Weather Rev 126(7):2017–2025

    Google Scholar 

  16. Falvey M, Garreaud R (2007) Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences. J Hydrometeorol 8(2):171–193

    Google Scholar 

  17. Fett R, Tag P (1983) Satellite observation and numerical model results of sea breeze effects as applied to the west coast of South America. First International conference on Southern Hemisphere Meteorology, 31 July-6 August 1983, São José dos Campos, Brazil 1:337–340

  18. Flores-Rojas JL, Cuxart J, Piñas-Laura M, Callañaupa S, Suárez-Salas L, Kumar S, Moya-Alvarez AS, SIlva Y (2019) Seasonal and diurnal cycles of surface boundary layer and energy balance in the Central Andes of Perú, Mantaro Valley. Atmosphere 10(12):779

    Google Scholar 

  19. Fu Y, Pan X, Xian T, Liu G, Zhong L, Liu Q, Li R, Wang Y (2018) Precipitation characteristics over the steep slope of the Himalayas observed by TRMM PR and VIRS. Clim Dyn. https://doi.org/10.1007/s00382-017-3992-3

  20. Fuenzalida H, Rutllant J (1987) Origen del vapor de agua queprecipita sobre el Alti-plano de Chile. In: Proc. II Congreso InterAmericano de Meteorologia, Buenos Aires, Argentina 6.3.1–6.3.4

  21. Galewsky J (2008) Orographic clouds in terrain-blocked flows: an idealized modeling study. J Atmos Sci 65:3460–3478

    Google Scholar 

  22. Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127:901–921

    Google Scholar 

  23. Garreaud R (2009) The Andes climate and weather. Adv Geosci 22:3–11

    Google Scholar 

  24. Garreaud R, Wallace JM (1997) The diurnal march of convective cloudiness over the Americas. Mon Weather Rev 125:3157–3171

    Google Scholar 

  25. Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Climate 14(12):2779–2789

    Google Scholar 

  26. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22

    Google Scholar 

  27. Garstang M, Massie Jr, HL, Halverson J, Greco S, Scala J (1994) Amazon coastal squall lines. Part I: structure and kinematics. Mon Weather Rev 122:608–622

  28. Giovannettone JP, Barros AP (2009) Probing regional orographic controls of precipitation and cloudiness in the Central Andes using satellite data. J Hydrometeorol 10:167–182

    Google Scholar 

  29. Grossman RL, Durran DR (1984) Interaction of the low level flow with Western Ghats mountains and offshore convection in the summer monsoon. Mon Weather Rev 112:652–672

    Google Scholar 

  30. Heymsfield GM, Tian L, Heymsfield AJ, Li L, Guimond S (2010) Characteristics of deep tropical and sub- tropical convection from nadir-viewing high-altitude airborne doppler radar. J Atmos Sci 67:285–308

    Google Scholar 

  31. Hocking LM (1959) The collision efficiency of small drops. Q J R Meteorol Soc 85:44–50

    Google Scholar 

  32. Horel JD, Cornejo-Garrido AG (1986) Convection along the coast of Northern Peru during 1983: Spatial and temporal variation of clouds and rainfall. Mon Weather Rev 114(11):2091–2105

    Google Scholar 

  33. Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95:701

    Google Scholar 

  34. Houston J, Hartley A (2003) The central Andean west-slope rain-shadow and its potentical contribution to the origin of hyperaridity in the Atacama desert. Int J Climatol 23(12):1453–1464

    Google Scholar 

  35. Houze RA (2012) Orographic effects on precipitating clouds. Rev Geophys 50. https://doi.org/10.1029/2011RG000365 RG1001, 47pp

  36. Houze RA, Wilton DC, Smull BF (2007) Monsoon convection in the Himalayan region as seen by the TRMM precipitation radar. Q J R Meteorol Soc 133:1389–1411

    Google Scholar 

  37. Insel N, Poulsen CJ, Ehlers TA (2010) Influence of the Andes Mountains on south American moisture transport, convection, and precipitation. Clim Dyn 35(7–8):1477–1492

    Google Scholar 

  38. Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2016) Influence of South Amer-ica orography on summertime precipitation in Southeastern South America. Clim Dyn. https://doi.org/10.1007/s00382-015-2814-8

  39. Junquas C, Takahashi K, Condom T, Espinoza JC, Chavez S, Sicart JE, Lebel T (2018) Understanding the influence of orography on the precipitation diurnal cycle and the associated atmospheric processes in the Central Andes. Clim Dyn. https://doi.org/10.1007/s00382-017-858-8

  40. Karydis VA, Kumar P, Barahona D, Sokolik IN, Nenes A (2011) On the effect of dust particles on global cloud condensation nuclei. J Geophys Res 116:D23204. https://doi.org/10.1029/2011JD016283

    Article  Google Scholar 

  41. Kumar S (2016) Three dimensional characteristics of precipitating cloud systems observed during Indian summer monsoon. Adv Spc Res 58(6):1017–1032. https://doi.org/10.1016/j.asr.2016.05.052

    Article  Google Scholar 

  42. Kumar S (2017a) Vertical characteristics of reflectivity in intense convective clouds using TRMM PR data. Environ Nat Res Res 7(2):58. https://doi.org/10.5539/enrr.V7n2p58

    Article  Google Scholar 

  43. Kumar S (2017b) A 10-year climatology of vertical properties of most active convective clouds over the Indian regions using TRMM PR. Theor Appl Climatol 127(1–2):429–440. https://doi.org/10.1007/s00704-015-1641-5

    Article  Google Scholar 

  44. Kumar S (2018) Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon. Theor Appl Climatol 133(3–4):1051–1059. https://doi.org/10.1007/s00704-017-2238-y

    Article  Google Scholar 

  45. Kumar S, Bhat GS (2016) Vertical profiles of radar reflectivity factor in intense convective clouds in the tropics. J Appl Meteorol Climatol 55(5):1277–1286. https://doi.org/10.1175/JAMC-D-15-0110.1

    Article  Google Scholar 

  46. Kumar S, Bhat GS (2017) Vertical structure of orographic precipitating clouds observed over South Asia during summer monsoon season. J Earth Syst Sci 126(8):114. https://doi.org/10.1007/s12040-017-0897-9

    Article  Google Scholar 

  47. Kumar S, Bhat GS (2019) Frequency of a state of cloud systems over tropical warm ocean. Environmental Research Communications 1(6):061003

    Google Scholar 

  48. Kumar S, Silva Y (2019) Vertical characteristics of radar reflectivity and DSD parameters in intense convective clouds over South East South Asia during the Indian summer monsoon: GPM observations. Int J Remote Sens 40(24):9604–9628

    Google Scholar 

  49. Kumar S, Silva Y (2020) Distribution of hydrometeors in monsoonal clouds over the South American continent during the austral summer monsoon: GPM observations. Int J Remote Sens 41(10):3677–3707

    Google Scholar 

  50. Kumar S, Silva-Vidal Y, Moya-Álvarez AS, Martínez-Castro D (2019a) Effect of the surface wind flow and topography on precipitating cloud systems over the Andes and associated Amazon basin: GPM observations. Atmos Res 225:193–208

    Google Scholar 

  51. Kumar S, Silva Y, Moya-Álvarez AS, Martínez-Castro D (2019b) Seasonal and regional differences in extreme rainfall events and their contribution to the world’s precipitation: GPM observations. Adv Meteorol 2019

  52. Lasher-Trapp S, Kumar S, Moser DH, Blyth AM, French JR, Jackson RC, Leon DC, Plummer DM (2018) On different microphysical pathways to convective rain-fall. J Appl Meteorol Climatol 57(10):2399–2417. https://doi.org/10.1175/JAMC-D-18-0041.1

    Article  Google Scholar 

  53. Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005

    Google Scholar 

  54. Lichtenstein ER, (1980) La Depresion del Noroeste Argentino (The Northwestern Argentina Low). Ph.D. dissertation, 223 pp. [Available from Departamento de Ciencias de la Atmos- fera, Ciudad Universitaria, 1428, Buenos Aires, Argentina.

  55. Marengo JA, Douglas M, Dias PS (2002) The South American low- level jet east of the Andes during the 1999 LBA-TRMM and LBAWET AMC campaign. J Geophys Res 107:8079

    Google Scholar 

  56. Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the NCEP–NCAR reanalyses: characteristics and temporal variability. J Clim 17:2261–2280

    Google Scholar 

  57. Martínez-Castro D, Kumar S, Flores Rojas JL, Moya-Álvarez A, Valdivia-Prado JM, Villalobos-Puma E, Castillo-Velarde CD, Silva-Vidal Y (2019) The impact of microphysics parameterization in the simulation of two convective rainfall events over the Central Andes of Peru using WRF-ARW. Atmosphere 10(8):442

    Google Scholar 

  58. Mason BJ (1972) Physics of thunderstorm. Proc R Soc Lond A Math Phys Sci 327:433

    Google Scholar 

  59. Medina S, Houze RA (2003) Air motions and precipitation growth in Alpine storms. Quart J R Meteor Soc Spec MAP Issue 129, 345–371

  60. Medina S, Houze RA Jr, Kumar A, Niyogi D (2010) Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quart J Roy Meteor Soc 136:593–616

    Google Scholar 

  61. Montini TL, Jones C, Carvalho LM (2019) The South American low-level jet: a new climatology, variability, and changes. J Geophys Res Atmos 124(3):1200–1218

    Google Scholar 

  62. Moya-Álvarez A, Gálvez J, Holguín A, Estevan R, Kumar S, Villalobos E, Martínez-Castro D, Silva Y (2018) Extreme rainfall forecast with the WRF-ARW model in the Central Andes of Peru. Atmosphere 9(9):362

    Google Scholar 

  63. Moya-Álvarez AS, Martínez-Castro D, Kumar S, Estevan R, Silva Y (2019) Response of the WRF model to different resolutions in the rainfall forecast over the complex Peruvian orography. Theor Appl Climatol 1–15

  64. Moya-Álvarez AS, Estevan R, Kumar S, Rojas JLF, Ticse JJ, Martínez-Castro D, Silva Y (2020) Influence of PBL parameterization schemes in WRF_ARW model on short-range precipitation’s forecasts in the complex orography of Peruvian Central Andes. Atmos Res 233:104708

    Google Scholar 

  65. Neiman PJ, Ralph FM, White AB, Kingsmill DE, Persson POG (2002) The statistical relationship between upslope flow and rainfall in California’s coastal mountains: observations during CALJET. Mon Weather Rev 130:1468–1492. https://doi.org/10.1175/1520-0493

    Article  Google Scholar 

  66. Nesbitt SW, Zipser EJ, Cecil DJ (2000) A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations. J Clim 13:4087–4106

    Google Scholar 

  67. Nesbitt SW, Cifelli R, Rutledge SA (2006) Storm morphology and rainfall characteristics of TRMM precipitation features. Mon Weather Rev 134(10):2702–2721

    Google Scholar 

  68. Nicolini M, Saulo AC (2006) Modeled Chaco low-level jets and related precipitation patterns during the 1997-1998 warm season. Meteor Atmos Phys 94:129–143. https://doi.org/10.1007/s00703-006-0186-7

  69. Nicolini M, Saulo C, Torres JC, Salio P (2002) Strong South American low-level jet events characterization during warm season and implications for enhanced precipitation. Meteorologica 27(1):2

    Google Scholar 

  70. Nieto Ferreira R, Rickenbach TM, Herdies DL, Carvalho LMV (2003) Variability of South American convective cloud systems and tropospheric circulation during January–March 1998 and 1999. Mon Wea Rev 131:961–973. https://doi.org/10.1175/1520-0493(2003)131,0961:VOSACC.2.0.CO;2

  71. Nogues-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291

    Google Scholar 

  72. Paegle J (1998) A comparative review of South American low level jets. Meteorologica 23:73–81

    Google Scholar 

  73. Qie X, Wu X, Yuan T, Bian J, Lu D (2014) Comprehensive pattern of deep convective systems over the Tibetan plateau-south Asian monsoon region based on TRMM data. J Clim 27:6612–6626

    Google Scholar 

  74. Rasmussen KL, Houze RA Jr (2011) Orogenic convection in subtropical South America as seen by the TRMM satellite. Mon Weather Rev 139:2399–2420

    Google Scholar 

  75. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671. https://doi.org/10.1146/annurev.earth.33.092203.122541

    Article  Google Scholar 

  76. Rojas JLF, Alvarez ASM, Kumar S, Castro DM, Puma EV, Vidal FYS (2019) Analysis of possible triggering mechanisms of severe thunderstorms in the tropical Central Andes of Peru, Mantaro Valley. Atmosphere 10(6):301

    Google Scholar 

  77. Romatschke U, Houze RA Jr (2010) Extreme summer convection in South America. J Clim 23:3761–3791

    Google Scholar 

  78. Rosenfeld D, Woodley WL, Krauss TW, Makitov V (2006) Aircraft microphysical documentation from cloud base to anvils of hailstorm feeder clouds in Argentina. J Appl Meteorol Climatol 45:1261–1281

    Google Scholar 

  79. Rotunno R, Houze RA (2007) Lessons on orographic precipitation from the mesoscale Alpine programme. Q J R Meteorol Soc 133:811–830. https://doi.org/10.1002/qj.67

    Article  Google Scholar 

  80. Rutllant J, Ulriksen P (1979) Boundary layer dynamics of the extremely arid northern part of Chile: the Antofagasta field experiment. Bound-Layer Meteorol 17(41–55):1979

    Google Scholar 

  81. Salio P, Nicolini M, Saulo AC (2002) Chaco low-level jet events characterization during the austral summer season by ERA reanalysis. J Geophys Res 107:4816. https://doi.org/10.1029/2001JD001315

    Article  Google Scholar 

  82. Salio P, Nicolini M, Zipser EJ (2007) Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon Weather Rev 135(4):1290–1309

    Google Scholar 

  83. Saulo AC, Nicolini M, Chou SC (2000) Model characterization of the South American low-level flow during the 1997–1998 spring–summer season. Climate Dyn 16:867–881. https://doi.org/10.1007/s003820000085

    Article  Google Scholar 

  84. Saulo AC, Seluchi ME, Nicolini M (2004) A case study of a Chaco low-level jet event. Mon Wea Rev 132:2669–2683

    Google Scholar 

  85. Spracklen DV, Carslaw KS, Pöschl U, Rap A, Forster PM (2011) Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos Chem Phys 11:9067–9087

    Google Scholar 

  86. Sulca J, Vuille M, Silva Y, Takahashi K (2016) Teleconnections between the Peruvian Central Andes and Northeast Brazil during extreme rainfall events in austral summer. J Hydrometeorol 17(2):499–515

    Google Scholar 

  87. Uppala S, Dee D, Kobayashi S, Simmons AJ (2007) Evolution of reanalysis at ECMWF. In: Proceedings of Third WCRP International Conference on Reanalysis, (Jan 28–Feb 2, Tokyo, Japan)

  88. Velasco I, Fritsch JM (1987) Mesoscale convective complexes in the Americas. J Geophys Res Atmos 92(D8):9591–9613

    Google Scholar 

  89. Vera C et al (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77

    Google Scholar 

  90. Viale M, Houze RA Jr, Rasmussen KL (2013) Upstream orographic enhancement of a narrow cold-frontal rainband approaching the Andes. Mon Weather Rev 141(5):1708–1730

    Google Scholar 

  91. Viale M, Garreaud R (2015) Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds. J Geophys Res Atmos 120(10):4962–4974

    Google Scholar 

  92. Villalobos EE, Martinez-Castro D, Kumar S, Silva Y, Fashe O (2019) Estudio de tor-mentas convectivas sobre los Andes Centrales del Perú usando los radares PR-TRMM y KuPR-GPM. Revista Cubana de Meteorol 25(1)

  93. Vizy EK, Cook KH (2007) Relationship between Amazon and high Andes rainfall. J Geophys Res 112:D07107. https://doi.org/10.1029/2006JD007980

    Article  Google Scholar 

  94. Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19(14):1579–1600

    Google Scholar 

  95. Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the Central Andes derived from ISCCP-B3 data. J Clim 17(17):3334–3348

    Google Scholar 

  96. Vuille M, Hardy DR, Braun C, Keimig F, Bradley RS (1998) Atmospheric circula-tion anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap. Bolivia J Geophys Res Atmos 103(D10):11191–11204

    Google Scholar 

  97. Yang K, Guo X, He J, Qin J, Koike T (2011) On the climatology and trend of the atmospheric heat source over the Tibetan Plateau: An experiments supported revisit. J Clim 24:1525–1541

    Google Scholar 

  98. Yuter SE, Houze RA (1995) 3-dimensional kinematic and microphysical evolution of Florida cumulonimbus .2. frequency-distributions of vertical velocity, reflectivity, and differential reflectivity. Mon Weather Rev 123:1941–1963

    Google Scholar 

  99. Zhang A, Fu Y, Chen Y, Liu G, Zhang X (2018) Impact of the surface wind flow on precipitation characteristics over the southern Himalayas: GPM observations. Atmos Res 202:10–22

    Google Scholar 

  100. Zipser EJ, Cecil DJ, Liu C, Nesbitt SW, Yorty DP (2006) Where are the most in-tense thunderstorms on earth? Bull Am Meteorol Soc 87:1057–1071

    Google Scholar 

  101. Zwiebel J, Van Baelen J, Anquetin S, Pointin Y, Boudevillain B (2016) Impacts of orography and rain intensity on rainfall structure. The case of the HyMeX IOP7a event. Q J R Meteorol Soc 1421:310–319

    Google Scholar 

Download references

Acknowledgments

The present study comes under the project “MAGNET-IGP: Strengthening the research line in physics and microphysics of the atmosphere (Agreement No 010-2017-FONDECYT).” I would like to thank the CON-CYTEC, Peru, for financial support and Inter-American Institute for Co-operation on Agriculture (IICA) for administrative support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shailendra Kumar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Moya-Álvarez, A.S., Castillo-Velarde, C.D. et al. Effect of low-level flow and Andes mountain on the tropical and mid-latitude precipitating cloud systems: GPM observations. Theor Appl Climatol 141, 157–172 (2020). https://doi.org/10.1007/s00704-020-03155-x

Download citation