Skip to main content
Log in

Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Evapotranspiration (ET) is an important process of water and energy exchanges between land and atmosphere. In this study, a processed-based GLEAM (global land-surface evaporation: the Amsterdam methodology) satellite assimilation product has been validated in the Yangtze River valley on the observations of flux and the water balance method. The changes of total ET and its components, well as the associated dynamics, have been analyzed for the period of 1980–2014. The total ET shows significant increasing trends especially in the middle and lower reaches of the Yangtze River valley, which is mostly due to the increase of transpiration. The spatial and temporal dynamics of total ET are analyzed with respect to temperature, precipitation, and solar radiation. The spatial pattern of total ET in the Yangtze River valley is found to be jointly determined by temperature and precipitation. As for the temporal dynamics, precipitation plays the dominant role in total ET in the source regions of the valley. While in the most regions, solar radiation is suggested to be a main controller, in the positive manner, of total ET. This may provide an in-depth understanding of ET changes in the warming climate, and form a basis for water resource management in the Yangtze River valley.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ali S, Elham F, Mohammad M, Hassan A, Forood S (2013) Estimation of small rainfall events impact on the urban runoff by analytical model. Eur Res 42:418–423

    Google Scholar 

  • Bai P, Liu X (2018) Intercomparison and evaluation of three global high-resolution evapotranspiration products across China. J Hydrol 566:743–755

    Article  Google Scholar 

  • Beck HE, AIJMVan D, Levizzani V, Schellekens J, Miralles DG, Martens B, ADe R (2017) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge satellite and reanalysis data. Hydrol Earth Syst Sci 21:1–38

    Article  Google Scholar 

  • Chen Y, Xia J, Liang S, Feng J, Fisher JB, Li X, Li X (2014) Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China. Remote Sens Environ 140:279–293

    Article  Google Scholar 

  • Chen Y, Yuan W, Xia J, Fisher JB, Dong W, Zhang X, Liang S, Ye A, Cai W, Feng J (2015) Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. J Hydrol 528:537–549

    Article  Google Scholar 

  • Dolman AJ, Jeu RAMD (2010) Evaporation in focus. Nat Geosci 3:296

    Article  Google Scholar 

  • Dooge J (1975) The water balance of bogs and fens. Review report Stud Reports Hydrol 19

  • Douville H, Ribes A, Decharme B, Alkama R, Sheffield J (2012) Anthropogenic influence on multidecadal changes in reconstructed global evapotranspiration. Nat Clim Chang 3:59–62

    Article  Google Scholar 

  • Fisher JB, Melton F, Middleton E, Hain C, Anderson M, Allen R, McCabe M, Hook S, Baldocchi D, Townsend PA, Kilic A, Tu K, Miralles DD, Perret J, Lagouarde J, Waliser D, Purdy AJ, French A, Schimel D, Famiglietti JS, Stephens G, Wood EF (2017) The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour Res 53:2618–2626

    Article  Google Scholar 

  • Fu BP (1981) On the calculation of the evaporation from land surface. Sci Atmos Sin 5:23–31 in Chinese

    Google Scholar 

  • Gao G, Chen D, Xu C, Simelton E (2007) Trend of estimated actual evapotranspiration over China during 1960-2002. J Geophys Res 112:D11120

    Article  Google Scholar 

  • Gong D, Kang S, Yao L, Zhang L (2007) Estimation of evapotranspiration and its components from an apple orchard in Northwest China using sap flow and water balance methods. Hydrol Process 21:931–938

    Article  Google Scholar 

  • Greve P, Orlowsky B, Mueller B, She J, Reichstein M, Seneviratne SI (2014) Global assessment of trends in wetting and drying over land. Nat Geosci 7:716–721

    Article  Google Scholar 

  • Greve P, Gudmundsson L, Orlowsky B, Seneviratne S (2015) Introducing a probabilistic Budyko framework. Geophys Res Lett 42:2261–2269

    Article  Google Scholar 

  • Guillod B, Orlowsky B, Miralles DG, Teuling AJ, Seneviratne SI (2015) Reconciling spatial and temporal soil moisture effects on afternoon rainfall. Nat Commun 6:6443

    Article  Google Scholar 

  • Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013) Terrestrial water fluxes dominated by transpiration. Nature 496:347–350

    Article  Google Scholar 

  • Jime C, Prigent C, Aires F (2009) Toward an estimation of global land surface heat fluxes from multisatellite observations. J Geophys Res 114:D06305

    Google Scholar 

  • Jung M, Reichstein M, Bondeau A (2009) Towards global empirical upscaling of FLUXNET eddy covariance observations: validation of a model tree ensemble approach using a biosphere model. Biogeosci Discuss 6:5271–5304

    Article  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, RDe J, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467:951–954

    Article  Google Scholar 

  • Li X, Liang S, Yuan W, Yu G, Cheng X, Chen Y, Zhao T, Feng J, Ma Z, Ma M, Liu S, Chen J (2014) Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology 7:139–149

    Article  Google Scholar 

  • Lin Y, Wang GX, Guo JY, Sun XY (2012) Quantifying evapotranspiration and its components in a coniferous subalpine forest in Southwest China. Hydrol Process 26:3032–3040

    Article  Google Scholar 

  • Liou Y, Kar SK (2014) Evapotranspiration estimation with remote sensing and various surface energy balance algorithms—a review. Energies 7:2821–2849

    Article  Google Scholar 

  • Liu Y, Xiao J, Ju W, Xu K, Zhou Y, Zhao Y (2016) Recent trends in vegetation greenness in China significantly altered annual evapotranspiration and water yield. Environ Res Lett 11:94010

    Article  Google Scholar 

  • Lockwood JG (1990) The influence of temperature variations on interception loss and water storage in vegetation canopies. Water Resour Res 26:941–943

  • Lv J, Ren J, Ju J (2004) The interdecadal variability of East Asia monsoon and its effect on the rainfall over China. J Trop Meteorol 20:73–80

    Google Scholar 

  • Mao Y, Wang K (2017) Comparison of evapotranspiration estimates based on the surface water balance, modified Penman-Monteith model, and reanalysis data sets for continental China. J Geophys Res-Atmos 122:3228–3244

    Article  Google Scholar 

  • Mao Y, Wang K, Liu X, Liu C (2016) Water storage in reservoirs built from 1997 to 2014 significantly altered the calculated evapotranspiration trends over China. J Geophys Res-Atmos 121:10,097–010,112

    Article  Google Scholar 

  • Miralles DG, Holmes TRH, RAMDe J, Gash JH, Meesters AGCA, Dolman AJ (2011a) Global land-surface evaporation estimated from satellite-based observations. Hydrol Earth Syst Sci 15:453–469

    Article  Google Scholar 

  • Miralles DG, RAMDe J, Gash JH, Holmes TRH, Dolman AJ (2011b) Magnitude and variability of land evaporation and its components at the global scale. Hydrol Earth Syst Sci Discuss 15:967–981

    Article  Google Scholar 

  • Miralles DG, MJVanDen B, Gash JH, Parinussa RM (2014a) El Niño–La Niña cycle and recent trends in continental evaporation. Nat Clim Chang 4:122–126

    Article  Google Scholar 

  • Miralles DG, Teuling AJ, CCVan H (2014b) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349

    Article  Google Scholar 

  • Mo X, Liu S, Lin Z, Wang S, Hu S, Liu S, Lin Z, Wang S, Trends SH (2015) Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrol Sci J 60:2163–2177

    Article  Google Scholar 

  • Modarres R, Paulo VD (2007) Rainfall trends in arid and semi-arid regions of Iran. J Arid Environ 70:344–355

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol 19:205–234

    Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Mueller B, Hirschi M, Jimenez C, Ciais P, Dirmeyer PA, Dolman AJ (2013) Benchmark products for land evapotranspiration: LandFlux-EVAL multi-dataset synthesis. Hydrol Earth Syst Sci Discuss 10:769–805

    Article  Google Scholar 

  • Oki T, Kanae S (2006) Global hydrological cycles and world water resources. Science 313:1068–1072

    Article  Google Scholar 

  • Peng J, Li Y, Tian L, Liu Y, Wang Y (2015) Vegetation dynamics and associated driving forces in eastern China during 1999–2008. Remote Sens 7:13641–13663

    Article  Google Scholar 

  • Pinzon J, Tucker C (2014) A non-stationary 1981-2012 AVHRR NDVI3G time series. Remote Sens 6:6929–6960

    Article  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100:81–92

    Article  Google Scholar 

  • Ribeiro L, Kretschmer N, Nascimento J, Buxo A, Rötting T, Soto G, Señoret M (2015) Evaluating piezometric trends using the Mann-Kendall test on the alluvial aquifers of the Elqui River basin Chile. Hydrol Sci J 60:1840–1852

    Article  Google Scholar 

  • Schlesinger WH, Jasechko S (2014) Transpiration in the global water cycle. Agric For Meteorol 189–190:115–117

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Senay GB, Leake S, Nagler PL, Artan G, Dickinson J, Cordova JT, Glenn EP (2011) Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrol Process 25:4037–4049

    Article  Google Scholar 

  • Shi Z, Shan N, Xu L, Yang X, Gao J, Guo H, Zhang X (2016) Spatiotemporal variation of temperature precipitation and wind trends in a desertification prone region of China from 1960 to 2013. Int J Climatol 36:4327–4337

    Article  Google Scholar 

  • Simmons A, Uppala SM, Dee D, Kobayashi S (2007) ERAInterim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:25–35

    Google Scholar 

  • Su B, Jiang T, Shi Y, Becker S, GEMMER M (2004) Observed precipitation trends in the Yangtze river catchment from 1951 to 2002. J Geogr Sci 14:204–218

    Article  Google Scholar 

  • Sun S, Chen H, Ju W, Yu M, Hua W, Yin Y (2014) On the attribution of the changing hydrological cycle in Poyang Lake. J Hydrol 514:214–225

    Article  Google Scholar 

  • Sun S, Chen H, Ju W, Wang G, Sun G (2017) On the coupling between precipitation and potential evapotranspiration: contributions to decadal drought anomalies in the Southwest China. Clim Dyn 48:3779–3797

    Article  Google Scholar 

  • Taylor CM, RAMde J, Guichard F, Harris PP, Dorigo WA (2012) Afternoon rain more likely over drier soils. Nature 489:423–426

    Article  Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis I II III. Nederl akad wetensch proc 12:345–381

    Google Scholar 

  • Tian Q, Yang S (2017) Regional climatic response to global warming: trends in temperature and precipitation in the Yellow Yangtze and Pearl River basins since the 1950s. Quat Int 440:1–11

    Article  Google Scholar 

  • Wang K, Dickinson RE (2012) A review of global terrestrial evapotranspiration: observation modeling climatology and climatic variability. Rev Geophys 50:RG2005

    Article  Google Scholar 

  • Wang X, Zhou Y (2016) Shift of annual water balance in the Budyko space for catchments with groundwater-dependent evapotranspiration. Hydrol Earth Syst Sc 20:3673–3690

    Article  Google Scholar 

  • Wang K, Dickinson RE, Wild M, Liang S (2010a) Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 1. Model development. J Geophys Res 115:D20112

    Article  Google Scholar 

  • Wang K, Dickinson RE, Wild M, Liang S (2010b) Evidence for decadal variation in global terrestrial evapotranspiration between 1982 and 2002: 2. Results. J Geophys Res 115:D20113

    Article  Google Scholar 

  • Wang Y, Liu B, Su B, Zhai J, GEMMER M (2011) Trends of calculated and simulated actual evaporation in the Yangtze River basin. J Clim 24:4494–4507

    Article  Google Scholar 

  • Xu T, Guo Z, Liu S, He X, Meng Y, Xu Z, Xia Y, Xiao J, Zhang Y, Ma Y, Song L (2018) Evaluating different machine learning methods for upscaling evapotranspiration from flux towers to the regional scale. J Geophys Res-Atmos 123:8674–8690

    Article  Google Scholar 

  • Yang X, Wang G, Ye J (2015) Spatial and temporal changing analysis of terrestrial evapotranspiration in Huai River basin based on GLEAM data. Trans Chinese Soc Agric Eng 31:133–139

    Google Scholar 

  • Yang L, Feng Q, Li C, Si J, Wen X, Yin Z (2016) Detecting climate variability impacts on reference and actual evapotranspiration in the Taohe River basin NW China. Hydrol Res 48:596–612

    Article  Google Scholar 

  • Yang X, Yong B, Ren L, Zhang Y, Long D (2017) Multi-scale validation of GLEAM evapotranspiration products over China via China FLUX ET measurements. Int J Remote Sens 38:5688–5709

    Article  Google Scholar 

  • Yao Y, Liang S, Qin Q, Wang K, Liu S, Zhao S (2012) Satellite detection of increases in global land surface evapotranspiration during 1984–2007. Int J Digit Earth 5:299–318

    Article  Google Scholar 

  • Yao Y, Liang S, Li X, Chen J, Liu S, Jia K, Zhang X, Xiao Z, Fisher JB, Mu Q, Pan M, Liu M, Cheng J, Jiang B, Xie X, Grünwald T, Bernhofer C, Roupsard O (2017) Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric For Meteorol 242:55–74

    Article  Google Scholar 

  • Zamani R, Mirabbasi R, Abdollahi S, Jhajharia D (2017) Streamflow trend analysis by considering autocorrelation structure long-term persistence and Hurst coefficient in a semi-arid region of Iran. Theor Appl Climatol 129:33–45

    Article  Google Scholar 

  • Zhang L, Potter N, Hickel K, Zhang Y, Shao Q (2008) Water balance modeling over variable time scales based on the Budyko framework – model development and testing. J Hydrol 360:117–131

    Article  Google Scholar 

  • Zhang S, Yu P, Wang Y, Zhang H, Krysanova V, Huang S, Xiong W, Xu L (2011) Estimation of actual evapotranspiration and its component in the upstream of Jinghe basin. Acta Geograph Sin 66:385–395

    Google Scholar 

  • Zhang K, Kimball JS, Nemani RR, Running SW, Hong Y, Gourley JJ, Yu Z (2015a) Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci Rep 5:15956

    Article  Google Scholar 

  • Zhang S, Shen R, Zhao H, Liu T, Shao H, Zhang Z (2015b) Correlating between evapotranspiration and precipitation provides insights into Xilingol grassland eco-engineering at larger scale. Ecol Eng 84:100–103

    Article  Google Scholar 

  • Zhang Y, Kong D, Gan R, Chiew FHS, McVicar TR, Zhang Q, Yang Y (2019) Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002-2017. Remote Sens Environ 222:165–182

    Article  Google Scholar 

  • Zhou Z, Wang H, Zhong B, Luo Z, Li Q (2016) Evapotranspiration estimation over Yangtze River basin from GRACE satellite measurement and in situ data. Egu General Assembly Conference 18

Download references

Funding

This study is supported by National Key Research and Development Program of China (2017YFA0603701) and National Natural Science Foundation of China (41561124014, 41375099).

Author information

Authors and Affiliations

Authors

Contributions

Jiao Lu and Guojie Wang conceived this study and performed the data analysis and wrote the manuscript. All the other authors are actively involved in the discussions.

Corresponding author

Correspondence to Guojie Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wang, G., Gong, T. et al. Changes of actual evapotranspiration and its components in the Yangtze River valley during 1980–2014 from satellite assimilation product. Theor Appl Climatol 138, 1493–1510 (2019). https://doi.org/10.1007/s00704-019-02913-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-019-02913-w

Navigation