Skip to main content

Future projection of droughts over major river basins in Southern Africa at specific global warming levels

Abstract

Reliable drought projections are crucial for the effective managements of future drought risk. Most of the existing drought projections over Southern Africa are based on precipitation alone, neglecting the influence of potential evapotranspiration (PET). The present study shows that inclusion of PET may alter the magnitude and robustness of the drought projections. The study used two drought indices to project potential impacts of global warming on Southern African droughts, focusing on four major river basins. One of the drought indices (SPEI: Standardized Precipitation Evapotranspiration Index) is obtained from climate water balance (i.e. precipitation minus potential evapotranspiration) while the other (SPI: Standardized Precipitation Index) is calculated from precipitation alone. For the projections, we analyzed multi-model regional climate simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX) at four specific global warming levels (GWLs) (i.e., 1.5 °C, 2.0 °C, 2.5 °C, and 3.0 °C) above the pre-industrial level and used the self-organizing maps to classify the drought projections into groups based on their similarities. Our results show that the CORDEX simulations give a realistic representation of all the necessary climate variables for quantifying droughts over Southern Africa. The simulations project a robust increase in SPEI drought intensity and frequency over Southern Africa and indicate that the magnitude of the projection increases with increasing GWLs, especially over the various river basins. In contrast, they project a non-significant change in SPI droughts at all the GWLs. The majority of the simulations clearly distinguish between the projected SPEI and SPI drought patterns, and the distinction becomes clearer with increasing GWLs. Hence, using precipitation alone for drought projection over Southern Africa may underestimate the magnitude and robustness of the projections. This study has application in mitigating climate change impacts on drought risk over Southern African river basins in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abatan AA, Gutowski WJ Jr, Ammann CM, Kaatz L, Brown BG, Buja L, Bullock R, Fowler T, Gilleland E, Gotway JH (2017a) Multi-year droughts and pluvials over Upper Colorado River basin and associated circulations. J Hydrometeorol 18:799–818. https://doi.org/10.1175/JHM-D-16-0125.1

    Article  Google Scholar 

  2. Abatan AA, Gutowski WJ Jr, Ammann CM, Kaatz L, Brown BG, Buja L, Bullock R, Fowler T, Gilleland E, Halley Gotway J (2017b) Statistics of multi-year droughts from the method for object-based diagnostic evaluation (MODE). Int J Climatol 38(8):3405–3420. https://doi.org/10.1002/joc.5512.

    Article  Google Scholar 

  3. Abatan AA, Abiodun BJ, Gutowski WJ, Rasaq‐Balogun SO (2018) Trends and variability in absolute indices of temperature extremes over Nigeria: linkage with NAO. Int J Climatol 38(2):593–612

    Article  Google Scholar 

  4. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome 300(9):D05109

    Google Scholar 

  5. Araujo JA, Abiodun BJ, Crespo O (2016) Impacts of drought on grape yields in Western Cape, South Africa. Theor Appl Climatol 123(1-2):117–130

    Article  Google Scholar 

  6. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int J Climatol 34(10):3001–3023

    Article  Google Scholar 

  7. Bellows BC (2003) Protecting riparian areas: farmland management strategies. Appropriate technology transfer for rural areas. Davis, CA

  8. Blench R, Marriage Z (1999) Drought and livestock in semi-arid Africa and southwest Asia. Working Paper 117. Overseas Development Institute, London, p 138

  9. Botai CM, Botai JO, de Wit JP, Ncongwane KP, Adeola AM (2017) Drought characteristics over the Western Cape Province, South Africa. Water 9(11):876

    Article  Google Scholar 

  10. Calow RC, MacDonald AM, Nicol AL, Robins NS (2010) Ground water security and drought in Africa: linking availability, access, and demand. Groundwater 48(2):246–256

    Article  Google Scholar 

  11. Crétat J, Pohl B, Richard Y, Drobinski P (2012) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38(3-4):613–634

    Article  Google Scholar 

  12. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Chang 2(1):45–65

    Article  Google Scholar 

  13. Davis CL, Vincent K (2017) Climate risk and vulnerability: a handbook for Southern Africa, 2nd edn. CSIR, Pretoria

  14. Donohue RJ, McVicar TR, Roderick ML (2010) Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. J Hydrol 386(1-4):186–197

    Article  Google Scholar 

  15. Donnelly C, Greuell W, Andersson J, Gerten D, Pisacane G, Roudier P, Ludwig F (2017) Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim Chang 143(1-2):13–26

    Article  Google Scholar 

  16. DWAF, Department of Water Affairs and Forestry, South Africa (Website) Introduction to the Orange River Basin. Online available at: www.dwaf.gov.za/orange/. Accessed 11 Nov 2018

  17. Earle A, Goldin J, Machiridza R et al (2006) Indigenous and institutional profile: Limpopo river basin, vol. 112. International Water Management Institute, Colombo

  18. Engelbrecht FA, McGregor JL, Engelbrecht CJ (2009) Dynamics of the Conformal‐Cubic Atmospheric Model projected climate‐change signal over southern Africa. Int J Climatol 29(7):1013–1033

    Article  Google Scholar 

  19. Everitt, B.S., Landau, S., Leese, M. and Stahl, D., (2011). Cluster analysis: Wiley series in probability and statistics.

  20. FAO (1997) FAO land and water bulletin. In: Frenken K and Faurès JM(1997) Irrigation potential in Africa: A Basin Approach. FAO Land and Water Bulletin, Vol. 4, Food & Agriculture Organization

  21. Folwell S, Farqhuarson F, Demuth S, Gustard A, Planos E, Seatena F, Servat E (2006) The impacts of climate change on water resources in the Okavango basin. IAHS Publ 308:382

    Google Scholar 

  22. Gosling SN, Zaherpour J, Mount NJ, Hattermann FF, Dankers R, Arheimer B, Breuer L, Ding J, Haddeland I, Kumar R, Kundu D (2017) A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 C, 2 C and 3 C. Clim Chang 141(3):577–595

    Article  Google Scholar 

  23. Guttman NB (1998) Comparing the Palmer drought index and the Standardized Precipitation Index. J Am Water Resour Assoc 34:113–121

    Article  Google Scholar 

  24. Guttman NB (1999) Accepting the Standardized Precipitation Index: a calculation algorithm. J Amer Water Resources Assoc 35:311–322

    Article  Google Scholar 

  25. Gyamfi C, Ndambuki JM, Salim RW (2016) Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water 8(12):588

    Article  Google Scholar 

  26. Haensler A, Saeed F, Jacob D (2013) Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim Chang 121(2):349–363

    Article  Google Scholar 

  27. Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  28. Harris IPDJ, Jones PD, Osborn TJ, Lister DH (2014) Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int J Climatol 34(3):623–642

    Article  Google Scholar 

  29. Hulme M (2016) 1.5 C and climate research after the Paris agreement. Nat Clim Chang 6(3):222–224

    Article  Google Scholar 

  30. IPCC (2007) The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miler HL (eds) Contribution of working group I to the fourth assessment report of the International Panel on Climate Change Program. Cambridge University Press, Cambridge, p 996

    Google Scholar 

  31. James R, Washington R (2013) Changes in African temperature and precipitation associated with degrees of global warming. Clim Chang 117(4):859–872

    Article  Google Scholar 

  32. Kalognomou EA, Lennard C, Shongwe M, Pinto I, Favre A, Kent M, Hewitson B, Dosio A, Nikulin G, Panitz HJ, Büchner M (2013) A diagnostic evaluation of precipitation in CORDEX models over Southern Africa. J Clim 26(23):9477–9506

    Article  Google Scholar 

  33. Karmalkar AV, Bradley RS (2017) Consequences of global warming of 1.5 C and 2 C for regional temperature and precipitation changes in the contiguous United States. PLoS One 12(1):e0168697

    Article  Google Scholar 

  34. Klutse NAB, Ajayi VO, Gbobaniyi EO, Egbebiyi TS, Kouadio K, Nkrumah F, Quagraine KA, Olusegun C, Diasso U, Abiodun BJ, Lawal K (2018) Potential impact of 1.5° C and 2° C global warming on consecutive dry and wet days over West Africa. Environ Res Lett 13(5):055013

    Article  Google Scholar 

  35. Kohonen T, Hynninen J, Kangas J, Laaksonen J (1996) Som pak: The self-organizing map program package. Report A31, Helsinki University of Technology, Laboratory of Computer and Information Science.

  36. Kusangaya S, Warburton ML, Archer Van Garderen E, Jewitt GPW (2014) Impacts of climate change on water resources in southern Africa: A review. Phys Chem Earth Parts A/B/C 67-69:47–54

    Article  Google Scholar 

  37. Lumsden TG, Jewitt GPW, Schulze RE, (2003) Modelling the Impacts of Land Cover and Land Management Practices on Runoff Responses. Water Research Commission, RSA, Report 1015/1/03

  38. Maúre G, Pinto I, Ndebele-Murisa M, Muthige M, Lennard C, Nikulin G, Dosio A, Meque A (2018) The Southern African climate under 1.5° C and 2° C of global warming as simulated by CORDEX regional climate models. Environ Res Lett 13(6):065002

    Article  Google Scholar 

  39. Masih I, Maskey S, Mussá FEF, Trambauer P (2014) A review of droughts on the African continent: a geospatial and long-term perspective. Hydrol Earth Syst Sci 18(9):3635–3649

    Article  Google Scholar 

  40. McKee TB , Doesken NJ, Kleist J (1993a) The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, Amer Meteor Soc, 179–184

  41. McKee TB, Doesken NJ, Kleist J (1993b) The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, vol. 17, No. 22, American Meteorological Society, Boston, pp 179–183

  42. Meque A, Abiodun BJ (2015) Simulating the link between ENSO and summer drought in Southern Africa using regional climate models. Clim Dyn 44(7-8):1881–1900

    Article  Google Scholar 

  43. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):202–216

    Article  Google Scholar 

  44. Mniki S (2009) Socio-economic impact of drought induced disasters on farm owners of Nkonkobe local municipality (Doctoral dissertation, University of the Free State).

  45. Monteith JL (1965) Evaporation and environment. The state and movement of water in living organisms. In: Fogg GE (ed) Sympos. Soc. Exper. Biol. 19, Academic Press, N.Y. 1965, pp. 205–234

  46. Munday C, Washington R (2017) Circulation controls on Southern African precipitation in coupled models: the role of the Angola Low. J Geophys Res-Atmos 122(2):861–877

    Article  Google Scholar 

  47. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078

    Article  Google Scholar 

  48. Nikulin G, Lennard C, Dosio A, Kjellström E, Chen Y, Hänsler A, Kupiainen M, Laprise R, Mariotti L, Maule CF, van Meijgaard E (2018) The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ Res Lett 13(6):065003

    Article  Google Scholar 

  49. Oettli P, Tozuka T, Izumo T, Engelbrecht FA, Yamagata T (2014) The self-organizing map, a new approach to apprehend the Madden–Julian Oscillation influence on the intraseasonal variability of rainfall in the southern African region. Clim Dyn 43(5-6):1557–1573

    Article  Google Scholar 

  50. Pfeifer S, Bülow K, Gobiet A, Hänsler A, Mudelsee M, Otto J, Rechid D, Teichmann C, Jacob D (2015) Robustness of ensemble climate projections analyzed with climate signal maps: seasonal and extreme precipitation for Germany. Atmosphere 6(5):677–698

    Article  Google Scholar 

  51. Reason, CJC, Landman W, Tennant W (2006) Seasonal to decadal prediction of southern African climate and its links with variability of the Atlantic Ocean. Bull Am Meteorol Soc 87(7):941–956

  52. Rind D, Goldberg R, Hansen J, Rosenzweig C, Ruedy R (1990) Potential evapotranspiration and the likelihood of future drought. J Geophys Res-Atmos 95(D7):9983–10004

    Article  Google Scholar 

  53. Rogelj J, Den Elzen M, Höhne N, Fransen T, Fekete H, Winkler H, Schaeffer R, Sha F, Riahi K, Meinshausen M (2016) Paris agreement climate proposals need a boost to keep warming well below 2 C. Nature 534(7609):631–639

    Article  Google Scholar 

  54. Scheff J, Frierson DM (2014) Scaling potential evapotranspiration with greenhouse warming. J Clim 27(4):1539–1558

    Article  Google Scholar 

  55. Schleussner CF, Rogelj J, Schaeffer M, Lissner T, Licker R, Fischer EM, Knutti R, Levermann A, Frieler K, Hare W (2016) Science and policy characteristics of the Paris agreement temperature goal. Nat Clim Chang 6(9):827–835

    Article  Google Scholar 

  56. Seibert M, Merz B, Apel H (2017) Seasonal forecasting of hydrological drought in the Limpopo Basin: a comparison of statistical methods. Hydrol Earth Syst Sci 21(3):1611–1629

    Article  Google Scholar 

  57. Skupin A, Agarwal P (2008) Introduction: What is a self‐organizing map?. Self‐Organising Maps: Applications in Geographic Information. Science:1–20

  58. Spalding-Fecher R, Chapman A, Yamba F, Walimwipi H, Kling H, Tembo B, Nyambe I, Cuamba B (2016) The vulnerability of hydropower production in the Zambezi River basin to the impacts of climate change and irrigation development. Mitig Adapt Strateg Glob Chang 21(5):721–742

    Article  Google Scholar 

  59. Thiemig V, Rojas R, Zambrano-Bigiarini M, Levizzani V, De Roo A (2012) Validation of satellite-based precipitation products over sparsely gauged African river basins. J Hydrometeorol 13(6):1760–1783

    Article  Google Scholar 

  60. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  61. Trambauer P, Werner M, Winsemius HC, Maskey S, Dutra E, Uhlenbrook S (2015) Hydrological drought forecasting and skill assessment for the Limpopo River basin, Southern Africa. Hydrol Earth Syst Sci 19(4):1695–1711

    Article  Google Scholar 

  62. Ujeneza EL, Abiodun BJ (2015) Drought regimes in Southern Africa and how well GCMs simulate them. Clim Dyn 44(5–6):1595–1609

    Article  Google Scholar 

  63. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696–1718

    Article  Google Scholar 

  64. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Clim 23:1696–1718

    Article  Google Scholar 

  65. Washington R, James R, Pearce H, Pokam WM, Moufouma-Okia W (2013) Congo Basin rainfall climatology: can we believe the climate models? Philos Trans R Soc B 368(1625):20120296

    Article  Google Scholar 

  66. Wehrens R (2011) Chemometrics with R: multivariate data analysis in the natural sciences and life sciences. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  67. Yin J, He F, Xiong YJ, Qiu GY (2017) Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrol Earth Syst Sci 21(1):183–196

    Article  Google Scholar 

  68. Zhang X, Zhang L, Zhao J, Rustomji P, Hairsine P (2008) Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour Res 44(7):W00A07

    Article  Google Scholar 

  69. Zhao T, Dai A (2015) The magnitude and causes of global drought changes in the twenty-first century under a low–moderate emissions scenario. J Clim 28(11):4490–4512

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported with research grants from the Water Research Commission (WRC, South Africa) and National Research Foundation (NRF, South Africa). The Centre for High Performance Computing (CHPC, South Africa) provided the computing facility used for the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Babatunde J. Abiodun.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abiodun, B.J., Makhanya, N., Petja, B. et al. Future projection of droughts over major river basins in Southern Africa at specific global warming levels. Theor Appl Climatol 137, 1785–1799 (2019). https://doi.org/10.1007/s00704-018-2693-0

Download citation