Trends of climate change indices in some Mexican cities from 1980 to 2010

Abstract

Global studies focusing on climate extremes in urban areas, specifically in Mexico, have not been approached with a sufficient level of detail, despite considerably increased risks for both infrastructure and human society. Based on 14 climate indices proposed by the Expert Team on Climate Change Detection and Indices (ETCCDI) and the application of the nonparametric Mann-Kendall and Sen’s slope tests, the observed trends of climate extremes in 16 urban areas in Mexico from 1980 to 2010 were analyzed. The results show that climate conditions over most cities of México are changing, as indicated by a warming trend during the study period. Significant increases were detected in the annual average maximum temperature (TMX) and the annual average minimum temperature (TMN). There is no clear trend that the warmest days (TXx) are increasing, but the annual number of warm days (TX90p) and summer days (SU) has increased, and the cold days (TX10p) have decreased. Associated with these changes are concomitant decreases in fewer coldest nights (TNn), an increase in the percentage of days with warm nights (TN90p) and tropical nights (TR), and a decrease in the number of frost days (FD). In contrast, the analysis reveals a statistically significant decrease in the mean temperature and the amount of warm days in Mexico City, which could be associated with the increasing trend of atmospheric pollution and the continuous smoke and ash emissions from the volcano Popocatepetl, which disperse incoming solar radiation and reduce radiative forcing. Climate change indices based on daily precipitation data show positive trends in many cities. In general, an increasing trend in very wet days (R95p), a number of very heavy rainfall days ≥ 25 mm (R25), and the annual total wet days (PRCP) were observed. These results highlight the vulnerability of cities confronted with both global and local climate change and the importance of promoting effective local risk reduction measures as part of urban planning for city dwellers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Aguilar E, Peterson TC, Ramírez OP, Frutos R, Retana JA, Solera M et al (2005) Changes in precipitation and temperature extremes in Central America and northern South America, 1961–2003. J Geophys Res 110:D23107. https://doi.org/10.1029/2005JD006119

    Article  Google Scholar 

  2. Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  3. Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:D05109. https://doi.org/10.1029/2005JD006290

    Article  Google Scholar 

  4. Allen L, Lindbergh F, Grimmond CSB (2011) Global to city scale urban anthropogenic heat flux: model and variability. Int J Climatol 31:1990–2005. https://doi.org/10.1002/joc.2210

    Article  Google Scholar 

  5. Almazroui M, Nazrul-Islam N, Dambul R, Jones PD (2014) Trends of temperature extremes in Saudi Arabia. Int J Climatol 34:808–826. https://doi.org/10.1002/joc3722

    Article  Google Scholar 

  6. Argüeso D, Evans JP, Fita L, Bormann KJ (2014) Temperature response to future urbanization and climate change. Clim Dyn 42:2183–2199. https://doi.org/10.1007/s00382-013-1789-6

    Article  Google Scholar 

  7. Arriaga-Ramírez S, Cavazos T (2010) Regional trends of daily precipitation indices in Northwest Mexico and Southwest United States. J Geophys Res 115:D14111. https://doi.org/10.1029/2009JD013248

    Article  Google Scholar 

  8. Assani AA, Guerfi N (2017) Analysis of the joint link between extreme temperatures, precipitation and climate indices in winter in three Hydroclimatic regions of southern Quebec. Atmosphere 8:75

    Article  Google Scholar 

  9. Barret BS, Esquivel-Longoria MI (2013) Variability of precipitation and temperature in Guanajuato, Mexico. Atmósfera 26:521–536. https://doi.org/10.1016/S0187-6236(13)71093-2

    Article  Google Scholar 

  10. Barrie LA, Whelpdale DM, Munn RE (1976) Effects of anthropogenic emissions on climate: a review of selected topics. Ambio 5:209–212

    Google Scholar 

  11. Burn DH, Hag Elnur AM (2002) Detection of hydrological trends and variability. J Hydrol 255:107–122. https://doi.org/10.1016/S0022-1694(01)00514-5

    Article  Google Scholar 

  12. Caesar J, Alexander LV, Trewin B, Tse-ring K, Sorany L, Vuniyayawa V, Keosavang N, Shimana A, Htay MM, Karmacharya J, Jayasinghearachchi DA, Sakkamart J, Soares E, Hung LT, Thuong LT, Hue CT, Dung NTT, Hung PV, Cuong HD, Cuong NM, Sirabaha S (2011) Changes in temperature and precipitation extremes over the indo-Pacific region from 1971 to 2005. Int J Climatol 31:791–801. https://doi.org/10.1002/joc.2118

    Article  Google Scholar 

  13. CICESE-Clicom (2015) Datos de trayectoria de ciclones tropicales de UNISYS y datos climáticos diarios del CLICOM del SMN con gráficas del CICESE. http://clicom-mex.cicese.mx/ciclones. Accessed 15 Nov 2016.

  14. CIDOC, SHF (2011) Current housing situation in Mexico 2011. Gobierno Federal, SHCP, SEDESOL, México City

  15. de Foy B, Krotkov NA, Bei N, Herndon SC, Huey LG, Martíınez AP, Ruiz-Suárez LG, Wood EC, Zavala M, Molina LT (2009) Hit from both sides: tracking industrial and volcanic plumes in Mexico City with surface measurements and OMI SO2 retrievals during the MILAGRO field campaign. Atmos Chem Phys 9:9599–9617 www.atmos-chem-phys.net/9/9599/2009/

    Article  Google Scholar 

  16. De la Mora-Orozco C, Ruiz-Corral JA, Flores-López H, Zarazúa-Villaseñor P et al (2016) Índices de cambio climático en el estado de Chiapas, 1960-2009. Rev Mex Cienc Agric 13:2523–2534

    Google Scholar 

  17. Deguenon J, Barbulescu A (2011) Study of extreme rainfall using GPD model. Int J Math Comp 11:28–37

    Google Scholar 

  18. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Caesar J (2013) Global land-based datasets for monitoring climatic extremes. Bull Amer Meteorol Soc 94:997–1006. https://doi.org/10.1175/BAMS-D-12-00109.1

    Article  Google Scholar 

  19. Drápela K, Drápelová I (2011) Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy 4:133–146

    Google Scholar 

  20. Dumitrescu A, Bojariu R, Birsan M-V, Marin L, Manea A (2015) Recent climatic changes in Romania from observational data (1961–2013). Theor Appl Climatol 122:111–119. https://doi.org/10.1007/s00704-014-1290-0

    Article  Google Scholar 

  21. Easterling DR, Meehl GA, Parmesan C, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. https://doi.org/10.1126/science.289.5487.2068

    Article  Google Scholar 

  22. Estrada F, Martínez-Arroyo A, Fernández-Eguiarte A, Luyando E, Gay C (2009) Defining climate zones in Mexico City using multivariate analysis. Atmósfera 22:175–193

    Google Scholar 

  23. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. https://doi.org/10.3354/cr019193

    Article  Google Scholar 

  24. Gadgil A, Dhorde A (2005) Temperature trends in twentieth century at Pune, India. Atmos Environ 39:6550–6556. https://doi.org/10.1016/j.atmosenv.2005.07.032

    Article  Google Scholar 

  25. García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía. In: UNAM

    Google Scholar 

  26. García-Cueto OR, Tejeda-Martínez A, Jáuregui E (2010) Heat waves and heat days in an arid city in the northwest of Mexico: current trends and in climate change scenarios. Int J Biometeorol 54:335–345. https://doi.org/10.1007/s00484-009-0283-7

    Article  Google Scholar 

  27. García-Cueto OR, Santillán-Soto N, Quintero-Núñez M, Ojeda-Benítez S, Velázquez-Limón N (2013) Extreme temperature scenarios in Mexicali, México, under climate change conditions. Atmósfera 26:509–520. https://doi.org/10.1016/S0187-6236(13)71092-0

    Article  Google Scholar 

  28. García-Escalante J (2008) Impacto del sector energético de Tula Hidalgo en la calidad del aire de la ZMVM. B.Sc. thesis. Facultad de Química, UNAM, México City

  29. Gocic M, Trajkovic S (2013) Analysis of changes in meteorological variables using Mann-Kendall and Sen's slope estimator statistical tests in Serbia. Glob Planet Change 100:172–182. https://doi.org/10.1016/j.gloplacha.2012.10.014

  30. Helsel DR, Hirsch MR (1992) Statistical methods in water resources. Elsevier, New York

    Google Scholar 

  31. Jáuregui E (2000) El Clima de la Ciudad de México. Instituto de Geografía y Plaza y Valdés México. In: D.F

    Google Scholar 

  32. Jáuregui E, Luyando E (1998) Long-term association between pan evaporation and the urban heat island in México City. Atmósfera 11:45–60

    Google Scholar 

  33. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Chang 4:3–7. https://doi.org/10.1023/A:1005491526870

    Article  Google Scholar 

  34. Katz RW, Brush GS, Parlange MB (2005) Statistics of extremes: modeling ecological disturbances. Ecology 86:1124–1134. https://doi.org/10.1890/04-0606

    Article  Google Scholar 

  35. Kendall MG (1975) Rank correlation methods. Charles Griffin, London

    Google Scholar 

  36. King’uyu SM, Kilavi M, Omeny P, Muigai E, Njogu AK (2011) Climate change indices for Kenya. KMS 10TH conference special issue. Journal of Meteorology and Related Sciences:49–55

  37. Kioutsioukis I, Melas D, Zerefos C (2010) Statistical assessment of changes in climate extremes over Greece (1955–2002). Int J Climatol 30:1723–1737. https://doi.org/10.1002/joc.2030

    Article  Google Scholar 

  38. Kishtawal CM, Nigoyi D, Tewari M, Pielke RA, Shepherd JM (2010) Urbanization signature in the observed heavy rainfall climatology over India. Int J Climatol 30:1908–1916. https://doi.org/10.1002/joc.2044

    Article  Google Scholar 

  39. Klein Tank AMG, Peterson TC, Quadir DA, Dorji S, Zou X, Tang H, Santhosh K, Joshi UR, Jaswak AK, Kolli RK et al (2006) Changes in daily temperature and precipitation extremes in central and South Asia. J Geophys Res 111:D16105. https://doi.org/10.1029/2005JD006316

    Article  Google Scholar 

  40. Klongvessa P, Chotpantarat S (2015) Statistical analysis of rainfall variations in the Bangkok urban area, Thailand. Arab J Geosci 8:4207–4219. https://doi.org/10.1007/s12517-014-1438-3

    Article  Google Scholar 

  41. Lamb HH (1974) The current trend of world climate—a report on the early 1970s and a perspective. Research publication no.3, CRURP 3 climate research unit, University of East Anglia

  42. Limsakul A, Singhruck P (2016) Long-term trends and variability of total and extreme precipitation in Thailand. Atmos Res 69:301–317. https://doi.org/10.1016/j.atmosres.2015.10.015

    Article  Google Scholar 

  43. López-Díaz F, Conde C, Sánchez O (2013) Analysis of indices of extreme temperature events at Apizaco, Tlaxcala, Mexico: 1952-2003. Atmósfera 26:349–358. https://doi.org/10.1016/S0187-6236(13)71081-6

    Article  Google Scholar 

  44. Magaña V, Pérez J, Méndez M (2003) Diagnosis and prognosis of extreme precipitation events in the Mexico City basin. Geofis Int 42:247–260

    Google Scholar 

  45. Magaña V, Zermeño D, Neri C (2012) Climate change scenarios and potential impacts on water availability in northern Mexico. Clim Res 51:171–184. https://doi.org/10.3354/cr01080

    Article  Google Scholar 

  46. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  47. Manton MJ, Della-Marta PM, Haylock MR, Hennessy KJ, Nicholls N, Chambers LE, Collins DA, Daw G, Finet A, Gunawan D, Inape K, Isobe H, Kestin TS, Lefale P, Leyu CH, Lwin T, Maitrepierre L, Ouprasitwong N, Page CM, Pahalad J, Plummer N, Salinger MJ, Suppiah R, Tran VL, Trewin B, Tibig I, Yee D (2001) Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. Int J Climatol 21:269–284. https://doi.org/10.1002/joc.610

    Article  Google Scholar 

  48. Merabtene T, Siddique M, Shanableh A (2016) Assessment of seasonal and annual rainfall trends in Sharjah City, UAE. Adv Meteorol Article ID 6206238, 13 pages. https://doi.org/10.1155/2016/6206238.

  49. Miao L, Jun X, Dejuan M (2012) Long-term trend analysis of seasonal precipitation for Beijing, China. J Resour Ecol 3(1):64–72. https://doi.org/10.5814/j.issn.1674-764x.2012.01.010

    Article  Google Scholar 

  50. Mishra V, Ganguly AR, Nijssen B, Lettenmaier DP (2015) Changes in observed climate extremes in global urban areas. Environ Res Lett 10(024005):1–10

    Google Scholar 

  51. Molina LT, Kolb CE, de Foy B, Lamb BK, Brune WH, Jimenez JL, Ramos-Villegas R, Sarmiento J, Paramo-Figueroa VH, Cardenas B, Gutierrez-Avedoy V, Molina MJ (2007) Air quality in North America’s most populous city – overview of the MCMA-2003 campaign. Atmos Chem Phys 7:2447–2473 http://www.atmos-chem-phys.net/7/2447/2007/

    Article  Google Scholar 

  52. Mugume I, Shen S, Tao S, Mujuni G (2016) Analysis of temperature variability over desert and urban areas of northern China. J Climatol Weather Forecasting 4:162. https://doi.org/10.4172/2332-2594.1000162

    Article  Google Scholar 

  53. Nandintsetseg B, Scott GJ, Goulden CE (2007) Trends in extreme daily precipitation and temperature near Lake Hövsgöl, Mongolia. Int J Climatol 27:341–347. https://doi.org/10.1002/joc.1404

    Article  Google Scholar 

  54. Nawrotzki RJ, Hunter LM, Runfola DM, Rios-Mena F (2015) Climate change as a migration driver from rural and urban Mexico. Environ Res Lett 10:1–9. https://doi.org/10.1088/1748-9326/10/11/114023

    Article  Google Scholar 

  55. New M, Hewitson B, Stephenson D, Tsiga A, Kruger A et al (2006) Evidence of trends in daily climate extremes over southern and West Africa. J Geophys Res 111:D14102. https://doi.org/10.1029/2005JD006289

    Article  Google Scholar 

  56. Ochoa C, Quintanar I, Raga G, Baumgardner D (2015) Changes in intense precipitation events in Mexico City. J Hydrometeorol 16:1804–1820. https://doi.org/10.1175/JHM-D-14-0081-1

    Article  Google Scholar 

  57. Ongoma V, Chen H, Omony GW (2016) Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor Appl Climatol 131(1–2):295–308. https://doi.org/10.1007/s00704-016-1973-9

    Article  Google Scholar 

  58. Ozer P, Mahamoud A (2013) Recent extreme precipitation and temperature changes in Djibouti City (1966-2011). J Climatol 2013:8. https://doi.org/10.1155/2013/928501

    Article  Google Scholar 

  59. Panday PK, Thibeault J, Frey KE (2015) Changing temperature and precipitation extremes in the Hindu Kush-Himalayan region: an analysis of CMIP3 and CMIP5 simulations and projections. Int J Climatol 35:3058–3077. https://doi.org/10.1002/joc.4192

    Article  Google Scholar 

  60. Peralta-Hernández A, Balling RC Jr, Barba-Martínez L (2009) Comparative analysis of extreme rainfall events: variations and trends from southern México. Atmósfera 22:219–228

    Google Scholar 

  61. Peterson TC, Manton MJ (2008) Monitoring changes in climate extremes: a tale of international collaboration. Bull Amer Meteor Soc 89:1266–1271. https://doi.org/10.1175/2008BAMS2501.1

    Article  Google Scholar 

  62. Peterson TC, Folland C, Gruza G, Hogg W, Mokssit AN, Plummer N (2001) Report on the activities of the working group on climate change detection and related rapporteurs 1998–2001. World Meteorological Organization rep. WCDMP-47, WMO-TD 1071, Geneva, Switzerland

  63. Peterson TC, Taylor MA, Demeritte R, Duncombe DL, Burton S, Thompson F et al (2002) Recent changes in climate extremes in the Caribbean region. J Geophys Res 107:D214601. https://doi.org/10.1029/2002JD002251

    Article  Google Scholar 

  64. Pingale SM, Khare D, Jat MK, Adamowski J (2014) Spatial and temporal trends of mean and extreme rainfall and temperature for the 33 urban centers of the arid and semi-arid state of Rajasthan, India. Atmos Res 138:73–90 https://doi.org/10.1016/j.atmosres.2013.10.024

    Article  Google Scholar 

  65. Qiang Z, Vijay PS, Suna P, Chend X (2011) Precipitation and stream flow changes in China: changing patterns, causes and implications. J Hydrol 410:204–216. https://doi.org/10.1016/j.jhydrol.2011.09.017

    Article  Google Scholar 

  66. R Core Team (2017) R: A Languaje and Environment for Statistical Computing. https://www.r-project.org/. Accessed 19 Feb 2017.

  67. Revi A, Satterthwaite DE, Aragón-Durand F, Corfee-Morlot J, RBR K, Pelling M, Roberts DC, Solecki W (2014) Urban Areas. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed. Cambridge University Press, United Kingdom and New York, pp 535–612

    Google Scholar 

  68. Rosenzweig C, Solecki WD, Hammer SA, Mehrotra S (2011) Urban climate change in context. In: Rosenzweig C, Solecki WD, Hammer SA, Mehrotra S (eds) Climate change and cities: first assessment report of the urban climate change research network, 1st edn. Cambridge University Press, Cambridge, pp 3–11

  69. Salmi T, Maata A, Antilla P, Ruoho-Airola T, Amnell T (2002) Detecting trends of annual values of atmospheric pollutants by the Mann–Kendall test and Sen’s slope estimates – the excel template application Makesens. Finnish Meteorological Institute, Helsinki, p 35

    Google Scholar 

  70. Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389. https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  71. Sen Roy S, Balling RC Jr (2004) Trends in extreme daily precipitation indices in India. Int J Climatol 24:457–466. https://doi.org/10.1002/joc.995

    Article  Google Scholar 

  72. Shahid S (2011) Trends in extreme rainfall events of Bangladesh. Theor Appl Climatol 104:489–499. https://doi.org/10.1007/s00704-010-0363-y

    Article  Google Scholar 

  73. Sillmann J, Roeckner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Chang 86:83–104. https://doi.org/10.1007/sl0584-007-9308-6

    Article  Google Scholar 

  74. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733. https://doi.org/10.1002/jgrd.50203

    Article  Google Scholar 

  75. Sirois A (1998) A brief and biased overview of time series analysis or how to find that evasive trend. In: WMO report no. 133 WMO/EMEP workshop on advanced statistical methods and their application to air quality data sets, Helsinki, pp. 14–18

  76. Tabari H, Marofi S, Ahmadi M (2011) Long-term variations of water quality parameters in the Maroon River, Iran. Environ Monit Assess 177:273–287. https://doi.org/10.1007/s10661-010-1633-y

    Article  Google Scholar 

  77. Vázquez-Aguirre JL, Brunet M, Jones PD (2008) Cambios observados en los extremos climáticos de temperatura y precipitación en el estado de Veracruz, México, a partir de datos diarios. In: Sigró Rodríguez J, Brunet India M, Aguilar E (eds) Cambio climático regional y sus impactos. Publicaciones de la Asociación Española de Climatología, 1st ed. Artyplan, Tarragona, pp 447–456

    Google Scholar 

  78. Vincent L, Peterson T, Barros V, Marino M, Rusticucci M, Carrasco G, Ramírez E et al (2005) Observed trends in indices of daily temperature extremes in South America 1960–2000. J Clim 18:5011–5023. https://doi.org/10.1175/JCLI3589.1

    Article  Google Scholar 

  79. Vincent LA, Aguilar E, Saindou M, Hassane AF, Jumaux G, Roy D, Booneeady P, Virasami R, Randriamarolaza LYA, Faniriantsoa FR, Amelie V, Seeward H, Montfraix B (2011) Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961-2008. J Geophys Res 116:D10108. https://doi.org/10.1029/2010D015303

    Article  Google Scholar 

  80. Wang XL (2003) Comments on “Detection of undocumented changepoints: A revision of the two-phase regression model”. J Clim 16:3383–3385. https://doi.org/10.1175/1520-0442(2003)016

    Article  Google Scholar 

  81. Wang X, Chen H, Wu Y, Feng Y, Pu Q (2010) New techniques for the detection and adjustment of shifts in daily precipitation data series. J Appl Meteorol Climatol 49:2416–2436. https://doi.org/10.1175/2010JAMC2376.1

    Article  Google Scholar 

  82. Wei T, Ding M, Wu B, Lu C, Wang S (2016) Variations in temperature-related extreme events (1975-2014) in Ny-Ålesund, Svalbard. Atmos Sci Let 17:102–108. https://doi.org/10.1002/asl.632

    Article  Google Scholar 

  83. Wen X, Wu X, Gao M (2017) Spatiotemporal variability of temperature and precipitation in Gansu Province (Northwest China) during 1951–2015. Atmos Res 197:132–149. https://doi.org/10.1016/j.atmosres.2017.07.001

    Article  Google Scholar 

  84. WHO (2006) Air quality guidelines global update 2005. World Health Organization regional Office for Europe. Copehhagen, Denmark

    Google Scholar 

  85. Zarazúa-Villaseñor P, Ruiz-Corral JA, Ramírez-Ojeda G et al (2014) Índices de extremos térmicos en las llanuras costeras del golfo sur de México. Rev Mex Cienc Agric 10:1843–1857

    Google Scholar 

  86. Zhang X, Yang P (2004) RClimdex (1.0) User Manual. http://cccma.seos.uvic.ca/ETCCDMI/software.html. Accessed 10 March 2017.

  87. Zhang X, Aguilar E, Sensoy S, Melkonyan H, Tagiyeva U, Ahmed N, Kutaladze N, Rahimzadeh F, Taghipour A, Hantosh TH, Albert P, Semawi M, Karam Ali M, Said al-Shabibi MH, al-Oulan Z, Zatari T, al Dean Khelet I, Hamoud S, Sagir R, Demircan M, Eken M, Adiguzel M, Alexander L, Peterson TC, Wallis T (2005) Trends in Middle East climate extreme indices from 1950 to 2003. J Geophys Res 110:D22104. https://doi.org/10.1029/2005JD006181

    Article  Google Scholar 

  88. Zhang XB, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  89. Zhou X, Bai Z, Yang Y (2017) Linking trends in urban extreme rainfall to urban flooding in China. Int J Climatol 37:4586–4593. https://doi.org/10.1002/joc.5107

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Rafael García-Cueto.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Cueto, O.R., Santillán-Soto, N., López-Velázquez, E. et al. Trends of climate change indices in some Mexican cities from 1980 to 2010. Theor Appl Climatol 137, 775–790 (2019). https://doi.org/10.1007/s00704-018-2620-4

Download citation