Skip to main content
Log in

Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Soil hydrothermal dynamics, resulting from the freezing and thawing processes in the active layer and their influencing factors, were studied in the upper Heihe River Basin (UHRB) in the Qilian Mountains, northeastern Tibetan Plateau. Soil temperature and water content measurements were taken in the active layer of the UHRB in alpine grassland from 2013 to 2014. The results showed that the thaw rate of the active layer was significantly smaller in alpine paludal meadows than the thaw rate in alpine meadows and alpine steppes. This was mainly related to the hydrothermal properties of soils in the active layer, such as moisture content, thermal conductivity, and specific heat. During the thawing process, the active layer soil water content was higher and fluctuated less in alpine paludal meadows. Conversely, the soil water content was lower and fluctuated more significantly in alpine meadows and alpine steppes. These findings could be explained by the prevalence of peat soils, with a low bulk density, and high clay and organic matter content. By contrast, the soil particles in the active layer of alpine meadows and alpine steppes were significantly coarser, with higher bulk density and lower organic matter content. During the freezing process, gravel content and soil texture had a great impact on the unfrozen water content in the frozen soils. However, the factors influencing the soil water retention in frozen soils are complex, and further study is needed. These results provide theoretical support for the evaluation of the hydrological characteristics of the alpine permafrost zone in the Qilian Mountains. Furthermore, the effect of frozen ground on hydrological changes due to climate change in the Heihe River Basin can be simulated and predicted, providing a scientific basis for the ecological conservation of the Qilian Mountains National Park.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arctic Climate Impact Assessment (ACIA) (2005) Impacts of a warming climate. Cambridge University Press, Cambridge, p 144

    Google Scholar 

  • Bense VF, Kooi H, Ferguson G, Read T (2012) Permafrost degradation as a control on hydrogeological regime shifts in a warming climate. J Geophys Res 117. https://doi.org/10.1029/2011JF002143

  • Callaghan TV, Tweedie CE, Webber PJ (2011) Multi-decadal changes in tundra environments and ecosystems: the international polar year–back to the future project (IPYBTF). Ambio 40:555–557

    Article  Google Scholar 

  • Cao WB, Wan L, Zhou X, Hu FS, Li ZM, Liang SH (2003) A study of the geological environment of super-permafrost water in the headwater of the Yellow River. Hydrogeol Eng Geol 6:6–10 (in Chinese)

    Google Scholar 

  • Cao B, Gruber S, Zhang T, Li L, Peng X, Wang K, Zheng L, Shao W, Guo H (2017) Spatial variability of active layer thickness detected by ground penetrating radar in the Qilian Mountains, Western China. J Geophys Res 122:574–591

    Article  Google Scholar 

  • Carey SK, Woo MK (2001) Slope runoff processes and flow generation in a subarctic, subalpine catchment. J Hydrol 253(1–4):110–129

    Article  Google Scholar 

  • Chaves DA, Lyra GB, Francelino MR, Silva LDB, Thomazini A, Schaefer C (2017) Active layer and permafrost thermal regime in a patterned ground soil in Maritime Antarctica, and relationship with climate variability models. Sci Total Environ 584–585:572–585

    Article  Google Scholar 

  • Chen RS, Yang Y, Han CT, Liu JF, Kang ES, Song YX, Liu ZW (2014) Field experimental research on hydrological function over several typical underlying surfaces in the cold regions of western China. Adv Earth Science 29(4):507–514 (in Chinese)

    Google Scholar 

  • Chen LY, Liang JY, Qin SQ, Liu L, Fang K, Xu YP, Ding JZ, Li F, Luo YQ, Yang YH (2016) Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nat Commun 7:13046

    Article  Google Scholar 

  • Cheng GD (1982) The formation of the thick ground ice. Sci China Ser B 3:281–288 (in Chinese)

    Google Scholar 

  • Cheng GD, Jin HJ (2013) Permafrost and groundwater on the Qinghai–Tibet Plateau and in northeast China. Hydrogeol J 21:5–23

    Article  Google Scholar 

  • Cheng GD, Wu TH (2007) Responses of permafrost to climate change and their environmental significance, Qinghai–Tibet Plateau. J Geophys Res 112:F02S03. https://doi.org/10.1029/2006JF000631

    Article  Google Scholar 

  • Christiansen HH, Etzelmüller B, Isaksen K, Juliussen H, Farbrot H, Humlum O, Johansson M, Ingeman-Nielsen T, Kristensen L, Hjort J, Holmlund P, Sannel ABK, Sigsgaard C, Akerman HJ, Foged N, Blikra LH, Pernosky MA, Odegard RS (2010) The thermal state of permafrost in the Nordic area during the International Polar Year 2007–2009. Permafr Periglac Process 21:156–181

    Article  Google Scholar 

  • Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS) (2006) Map of the glaciers, frozen ground and deserts in China (1:4000000 Scale). Science Press, Beijing (in Chinese)

    Google Scholar 

  • Ding YJ, Xiao CD (2013) Challenges in the study of cryospheric changes and their impacts. Adv. Earth Sci 28(10):1067–1076 (in Chinese)

    Google Scholar 

  • Ding JZ, Chen LY, Ji CJ, Hugelius G, Li YN, Liu L, Qin SQ, Zhang BB, Yang GB, Li F, Fang K, Chen YL, Peng YF, Zhao X, He HL, Smith P, Fang JY, Yang YH (2017) Decadal soil carbon accumulation across Tibetan permafrost regions. Nat Geosci 10:420–424. https://doi.org/10.1038/NGEO2945

    Article  Google Scholar 

  • Ebel BA (2012) Wildfires impacts on soil-water retention in the Colorado Front Range, United States. Water Res 48(12):12515

    Google Scholar 

  • Frauenfeld OW, Zhang T, McCreight JL (2007) Northern hemisphere freezing/thawing index variations over the twentieth century. Int J Climatol 27:47–63

    Article  Google Scholar 

  • Gao B, Qin Y, Wang YH, Yang DW, Zheng YR (2016a) Modeling Ecohydrological processes and spatial patterns in the upper Heihe Basin in China. Forests 7:10

    Article  Google Scholar 

  • Gao TG, Zhang TJ, Lan C, Kang SC, Sillanpää M (2016b) Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau. Cold Reg Sci Technol 126:36–43

    Article  Google Scholar 

  • Gao B, Yang DW, Qin Y, Wang YH, Li HY, Zhang YL, Zhang TJ (2018) Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau. Cryosphere 12(2):657–673

    Article  Google Scholar 

  • Gruber S, Haeberli W (2009) Mountain permafrost, permafrost soils. Springer, pp 33–44

  • Hinzman LD, Bettez N, Chapin FS, Dyurgerov M, Fastie C, Griffith DB, Hope A, Huntington HP, Jensen A, Kane DL, Kofinas G, Lynch A, Lloyd A, McGuire AD, Nelson FE, Osterkamp T, Oechel WC, Racine C, Romanovsky VE, Schimel J, Stow D, Sturm M, Tweedie CE, Vourlitis G, Walker M, Webber PJ, Welker J, Winker K, Yoshikawa K (2005) Evidence and implications of recent climate change in terrestrial regions of the Arctic. Clim Chang 72:251–298

    Article  Google Scholar 

  • Hu HC, Wang GX, Wang YB, Liu GS, Li TB, Ren DX (2009) Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers. Chin Sci Bull 54:1225–1233

    Google Scholar 

  • Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Xie CW, Pang QQ, Zou DF (2017) Comparison of the thermal conductivity parameterizations for a freeze–thaw algorithm with a multi-layered soil in permafrost regions. Catena 156:244–251

    Article  Google Scholar 

  • Jin HJ, Li SX, Cheng GD, Wang SL, Li X (2000) Permafrost and climatic change in China. Glob Planet Chang 26:387–404

    Article  Google Scholar 

  • Jin HJ, He RX, Cheng GD, Wu QB, Lü LZ, Chang XL (2009) Changes in frozen ground in the source area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environ Res Lett 4:045206

    Article  Google Scholar 

  • Jorgenson MT, Racine CH, Walters JC, Osterkamp TE (2001) Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Clim Chang 48:551–579

    Article  Google Scholar 

  • Jorgenson MT, Shur YL, Pullman ER (2006) Abrupt increase in permafrost degradation in Arctic Alaska. Geophys Res Lett 33(2)

  • Lan C, Zhang YX, Bohn TJ, Zhao L, Li JL, Liu QM, Zhou BR (2015) Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J Geophys Res 120:8276–8298. https://doi.org/10.1002/2015JD023193

    Article  Google Scholar 

  • Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW (2013) Heihe watershed allied telemetry experimental research (HiWATER): scientific objectives and experimental design. Bull Am Meteorol Soc 94(8):1145–1160

    Article  Google Scholar 

  • Li J, Sheng Y, Wu JC, Chen J, Ning ZJ, Cao YB, Feng ZL (2014a) Spatial and temporal variations of the superficial hydrothermal characteristics in permafrost regions in the source areas of the Datong River, Qilian Mountains. J Glaciol Geocryol 36(4):994–1001 (in Chinese)

    Google Scholar 

  • Li ZX, Feng Q, Liu W, Wang TT, Cheng AF, Gao Y, Guo XY, Pan YH, Li JG, Guo R, Jia B (2014b) Study on the contribution of cryosphere to runoff in the cold alpine basin: a case study of Hulugou River Basin in the Qilian Mountains. Glob Planet Chang 122:345–361

    Article  Google Scholar 

  • Li ZX, Feng Q, Wang QJ, Yong S, Li HY, Li YG (2016) The influence from the shrinking cryosphere and strengthening evapotranspiration on hydrologic process in a cold basin, Qilian Mountains. Glob Planet Chang 144:119–128

    Article  Google Scholar 

  • Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Jiang L, He JS (2017) Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 8:15378

    Article  Google Scholar 

  • McBride RA, Mackintosh FE (1984) Soil survey interpretations from water retention data: I. Development and validation of a water retention model. Soil Sci Soc Am J 48(6):1338–1343

    Article  Google Scholar 

  • Mu CC, Zhang TJ, Wu QB, Zhang XK, Cao B, Wang QF, Peng XQ, Cheng GD (2014) Stable carbon isotopes as indicators for permafrost carbon vulnerability in upper reach of Heihe River basin, northwestern China. Quat Int 321:71–77

    Article  Google Scholar 

  • Mu CC, Zhang TJ, Zhang XK, Cao B, Peng XQ, Cao L, Su H (2016) Pedogenesis and physicochemical parameters influencing soil carbon and nitrogen of alpine meadows in permafrost regions in the northeastern Qinghai-Tibetan Plateau. Catena 141:85–91

    Article  Google Scholar 

  • Nguyen PM, Van Le K, Botula YD, Cornelis WM (2015) Evaluation of soil water retention pedotransfer for Vietnamese Mekong Delta soils. Agric Water Manag 158:126–138

    Article  Google Scholar 

  • Niu GY, Yang ZL (2006) Effects of frozen soil on snowmelt runoff and soil water storage at a continental scale. J Hydrometeorol 7:937–952

    Article  Google Scholar 

  • Niu FJ, Liu MH, Cheng GD, Lin ZJ, Luo J, Yin GA (2015) Long-term thermal regimes of the Qinghai–Tibet Railway embankments in plateau permafrost regions. Sci China Earth Sci 58(9):1669–1676

    Article  Google Scholar 

  • Peng XQ, Zhang TJ, Cao B, Wang QF, Wang K, Shao WW, Guo H (2016) Changes in freezing-thawing index and soil freeze depth over the Heihe River Basin, Western China. Arct Antarct Alp Res 48(1):161–176

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vörösmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Piao SL, Cui MD, Chen AP, Wang XH, Ciais P, Liu J, Tang YH (2011) Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric For Meteorol 151(12):1599–1608

    Article  Google Scholar 

  • Ping CL, Jastrow JD, Jorgenson MT, Michaelson GJ, Shur YL (2017) Permafrost soils and carbon cycling. Soil 1:147–171

    Article  Google Scholar 

  • Qin Y, Lei HM, Yang DW, Gao B, Wang YH, Cong ZT, Fan WJ (2016) Long-term change in the depth of seasonally frozen ground and its ecohydrological impacts in the Qilian Mountains, northeastern Tibetan Plateau. J Hydrol 542:204–221

    Article  Google Scholar 

  • Qin Y, Yang DW, Gao B, Wang TH, Chen JS, Chen Y, Wang YH, Zheng GH (2017) Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China. Sci Total Environ 605–606:830–841

    Article  Google Scholar 

  • Ran YH, Li X, Cheng GD, Zhang T, Wu QB, Jin HJ, Jin R (2012) Distribution of permafrost in China: an overview of existing permafrost maps. Permafr Periglac Process 23:322–333

    Article  Google Scholar 

  • Romanovsky VE, Smith SL, Christiansen HH (2010) Permafrost thermal state in the polar northern hemisphere during the international polar year 2007–2009: a synthesis. Permafr Periglac Process 21(2):106–160

    Article  Google Scholar 

  • Saito K, Kimoto M, Zhang T, Takata K, Emori S (2007) Changes in hydro-thermal regimes in frozen ground regions under global warming scenarios simulated by a high-resolution climate model. J Geophys Res 112:F02S11

    Article  Google Scholar 

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Chang 76:241–264

    Article  Google Scholar 

  • Serreze MC, Walsh JE, Chapin FS III, Osterkamp T, Dyurgerov M, Romanovsky V, Oechel WC, Morison J, Zhang T, Barry RG (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Chang 46:159–207

    Article  Google Scholar 

  • Smith SL, Romanovsky VE, Lewkowicz AG, Burn CR, Allard M, Clow GD, Yoshikawa K, Throop J (2010) Thermal state of permafrost in North America–a contribution to the International Polar Year. Permafr Periglac Process 21:117–135

    Article  Google Scholar 

  • Su FG, Duan XL, Chen DL, Hao ZC, Lan C (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208

    Article  Google Scholar 

  • Sun Y, Wang YB, Sun Z, Liu GH, Gao ZY (2017) Impact of soil organic matter on water hold capacity in permafrost active layer on the Tibetan Plateau. J Desert Res 37(2):288–295

    Google Scholar 

  • Wang QF, Zhang TJ (2014) Spatiotemporal variations of maximum seasonal freeze depth in 1950s–2007 over the Heihe River Basin, Northwest China. Sci Cold Arid Reg 6(3):0209–0218

    Google Scholar 

  • Wang GX, Shen YP, Qian J, Wang JD (2003) Study on the influence of vegetation change on soil moisture cycle in alpine meadow. J Glaciol Geocryol 25:653–659 (in Chinese)

    Google Scholar 

  • Wang GX, Li YS, Wu QB, Wang YB (2009a) Impacts of permafrost changes on alpine ecosystem in Qinghai–Tibet Plateau. Sci China Earth Sci 49(11):1156–1169

    Article  Google Scholar 

  • Wang GX, Hu HC, Li TB (2009b) The influence of freeze–thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375:438–449

    Article  Google Scholar 

  • Wang NL, Zhang SB, He JQ, Pu JC, Wu XB, Jiang X (2009c) Tracing the major source area of the mountainous runoff generation of the Heihe River in northwest China using stable isotope technique. Chin Sci Bull 54:2751–2757

    Article  Google Scholar 

  • Wang QF, Zhang TJ, Wu JC, Peng XQ, Zhong XY, Mu CC, Wang K, Wu QB, Cheng GD (2013) Investigation on permafrost characteristics over the upper reaches of the Heihe River Basin in Qilian Mountains. J Glaciol Geocryol 35(1):19–29 (in Chinese)

    Google Scholar 

  • Wang QF, Zhang TJ, Peng XQ, Cao B, Wu QB (2015) Changes of soil thermal regimes in the Heihe River Basin over Western China. Arct Antarct Alp Res 47:231–241

    Article  Google Scholar 

  • Wang QF, Jin HJ, Zhang TJ, Wu QB, Cao B, Peng XQ, Wang K, Li LL (2016) Active layer seasonal freeze–thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains. Chin Sci Bull 61(24):2742–2756 (in Chinese)

    Article  Google Scholar 

  • Wang XQ, Chen RS, Yang Y (2017a) Effects of permafrost degradation on the hydrological regime in the source regions of the Yangtze and Yellow Rivers, China. Water 9(11):897

    Article  Google Scholar 

  • Wang QF, Jin HJ, Zhang TJ, Cao B, Peng XQ, Wang K, Xiao XX, Guo H, Mu CC, Li LL (2017b) Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai–Tibet plateau. Glob Planet Chang 156:1–12

    Article  Google Scholar 

  • Wang QF, Zhang TJ, Jin HJ, Cao B, Peng XQ, Wang K, Li LL, Guo H, Liu J, Cao L (2017c) Observational study on the active layer freeze–thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai–Tibet Plateau. Quat Int 440:13–22

    Article  Google Scholar 

  • Wen Z, Ma W, Feng WJ, Deng YS, Wang DY, Fan ZS, Zhou CL (2012) Experimental study on unfrozen water content, and soil water potential of Qinghai–Tibetan silty clay. Environ Earth Sci 66(5):1467–1476

    Article  Google Scholar 

  • Wen Z, Ma W, Xue K, Zhang ML, Yu QH (2014) Study on moisture migration in frozen soil by soil matric potential sensor. Chin J Soil Sci 45(2):370–375 (in Chinese)

    Google Scholar 

  • Woo MK, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada, 1999–2002. Hydrol Process 19:215–229

    Article  Google Scholar 

  • Wősten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basin soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

  • Wu QB, Niu FJ (2013) Permafrost changes and engineering stability in Qinghai–Xizang Plateau. Chin Sci Bull 58

  • Wu Q, Zhang T, Liu Y (2012) Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010. Cryosphere 6:607–612

    Article  Google Scholar 

  • Wu QB, Hou YD, Yun HB, Liu YZ (2015) Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai–Xizang (Tibet) Plateau, China. Glob Planet Chang 124:149–155

    Article  Google Scholar 

  • Wu QB, Zhang ZQ, Gao SR, Ma W (2016) Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai–Tibet Plateau, China. Cryosphere 10:1695–1706

    Article  Google Scholar 

  • Wu TH, Qin YH, Wu XD, Li R, Zou DF, Xie CW (2017) Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai–Tibet Plateau from 1980 to 2013. Theor Appl Climatol 132:1187–1199. https://doi.org/10.1007/s00704-017-2157-y

    Article  Google Scholar 

  • Xu XZ, Wang JC, Zhang LX (2010) Physics of frozen soils. Science Press, Beijing, pp 130–161 (in Chinese)

    Google Scholar 

  • Yang DQ, Ye BS, Kane DL (2004) Streamflow changes over Siberian Yenisei River basin. J Hydrol 296:59–80

    Article  Google Scholar 

  • Yang MX, Nelson FE, Shiklomanov NI, Guo DL, Wan GN (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: a review of recent research. Earth-Sci Rev 130:31–44

    Article  Google Scholar 

  • Yang YG, Xiao HL, Wei YP, Zhao LJ, Zou SB, Yang Q, Yin ZL (2012) Hydrological processes in the different landscape zones of alpine cold regions in the wet season, combining isotopic and hydro-chemical tracers. Hydrol Process 26(10):1457–1466

    Article  Google Scholar 

  • Yang Y, Chen RS, Ye BS, Song YX, Liu JF, Han CT, Liu ZW (2013) Heat and water transfer processes on the typical underlying surfaces of frozen soil in cold regions (II): water and heat transfer. J Glaciol Geocryol 35:1555–1563 (in Chinese)

    Google Scholar 

  • Yang F, Zhang GL, Yang JL, Li DC, Zhao YG, Liu F, Yang RM, Yang F (2014) Organic matter controls of soil water retention in an alpine grassland and its significance for hydrological processes. J Hydrol 519:3086–3093

    Article  Google Scholar 

  • Yi SH, Wang XY, Qin Y, Xiang B, Ding YJ (2014) Responses of alpine grassland on Qinghai-Tibetan plateau to climate warming and permafrost degradation: a modeling perspective. Environ Res Lett 9(7):074014

    Article  Google Scholar 

  • You QG, Xue X, Peng F, Dong SY, Gao YH (2017) Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau. Agric For Meteorol 232:48–65

    Article  Google Scholar 

  • Zhang T, Armstrong RL, Smith J (2003a) Investigation of the near-surface soil freeze/thaw cycle in the contiguous United States: algorithm development and validation. J Geophys Res 108:8860

    Google Scholar 

  • Zhang YS, Ohata T, Kadota T (2003b) Land-surface hydrological processes in the permafrost region of the eastern Tibetan Plateau. J Hydrol 283:41–56

    Article  Google Scholar 

  • Zhang GL, Zhang YJ, Dong JW, Xiao XM (2013a) Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc Natl Acad Sci U S A 110(11):4309–4314

    Article  Google Scholar 

  • Zhang YL, Cheng GD, Li X, Han XJ, Wang L, Li HY, Chang XL, Flerchinger G (2013b) Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed. Hydrol Process 27:3762–3776

    Article  Google Scholar 

  • Zhang YS, Ma YZ, Zhang YL, Gao HF, Zhai JQ (2015) Hillslope patterns in thaw-freeze cycle and hydrothermal regimes on Tibetan Plateau. Chin Sci Bull 60:664–673 (in Chinese)

    Article  Google Scholar 

  • Zhang YL, Cheng GD, Li X, Jin HJ, Yang DW, Flerchinger GN, Chang XL, Bense VF, Han XJ, Liang J (2017) Influences of frozen ground and climate change on hydrological processes in an alpine watershed: a case study in the upstream area of the Heihe River, Northwest China. Permafr Periglac Process 28(2):420–432

    Article  Google Scholar 

  • Zhao L, Cheng GD, Li SX, Zhao XM, Wang SL (2000) Thawing and freezing processes of the active layer in Wudaoliang region of Tibetan Plateau. Chin Sci Bull 45:2181–2187

    Article  Google Scholar 

  • Zhao L, Wu QB, Marchenko SS, Sharkhuu N (2010) Thermal state of permafrost and active layer in central Asia during the International Polar Year. Permafr Periglac Process 21:198–207

    Article  Google Scholar 

  • Zhou YW, Guo DX, Qiu GQ, Cheng GD, Li SD (2000) Frozen ground in China. Science Press, Beijing, pp 81–91 (in Chinese)

    Google Scholar 

  • Zhou J, Kinzelbach W, Cheng GD, Zhang W, He XB, Ye BS (2013) Monitoring and modeling the influence of snow pack and organic soil on a permafrost active layer, Qinghai–Tibetan Plateau of China. Cold Reg Sci Technol 90(91):38–52

    Article  Google Scholar 

  • Zhou J, Pomeroy JW, Zhang W, Cheng GD, Wang GX, Chen C (2014) Simulating cold regions hydrological processes using a modular model in the west of China. J Hydrol 509:13–24

    Article  Google Scholar 

Download references

Funding

This study is supported by the Natural Science Foundation (NSF) of China (Grant Nos. 41501080, 91325202, and 41472229), the Chinese Academy of Sciences (CAS) Key Research Program (Grant No. KZZD-EW-13), China Postdoctoral Science Foundation Project (2016 M602900), and the Independent Research Project of the State Key Laboratory of the Frozen Soil Engineering (Grant No. SKLFSE-ZT-37).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Wang.

Additional information

Qianqian Yang is the co-first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yang, Q., Guo, H. et al. Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau. Theor Appl Climatol 136, 929–941 (2019). https://doi.org/10.1007/s00704-018-2529-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-018-2529-y

Navigation